
Delft University of Technology
Master of Science Thesis in Embedded Systems

Next Generation Innovation Vehicle HMI
System

Arend-Jan van Hilten

Embedded
Networked
Systems

Next Generation Innovation Vehicle HMI System

Master of Science Thesis in Embedded Systems

Embedded and Networked Systems Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628CD Delft, The Netherlands

Arend-Jan van Hilten
a.j.vanhilten@student.tudelft.nl

thesis@arend-jan.com

2023-01-26

mailto:a.j.vanhilten@student.tudelft.nl
mailto:thesis@arend-jan.com

Author
Arend-Jan van Hilten (a.j.vanhilten@student.tudelft.nl)
(thesis@arend-jan.com)

Title
Next Generation Innovation Vehicle HMI System

MSc Presentation Date
2023-02-09

Graduation Committee
Prof. Dr. Koen Langendoen (chairman) Delft University of Technology
Dipl. Ing. Volker Vogel ZF Friedrichshafen AG
Prof. Dr. Ir. Martijn Wisse Delft University of Technology
Martin Klomp MSc Delft University of Technology

mailto:a.j.vanhilten@student.tudelft.nl
mailto:thesis@arend-jan.com

Abstract

Modern vehicles have multiple different buses to communicate between com-
ponents, like CAN (FD) and FlexRay. ZF builds ”innovation vehicles” with
new components to showcase and test them. These components are connec-
ted to the automotive buses. ZF uses a web-based Human Machine Interface
(HMI) to control and view the state of these parts. This HMI is needed because
some systems are not visible or controllable in regular operation. A gateway is
required to connect the HMI and the buses.
ZF currently uses a CAN to WebSocket gateway that does not support other

buses. There is no readily available hardware with the required buses and inter-
faces. A WebSocket interface is required, as the HMI is running in a browser,
limiting the possible protocols.
Therefore, the challenge for this thesis is how to (re)design this HMI system

for future innovation vehicles with buses besides CAN. Each vehicle can have a
different number and types of buses, so the system must be able to cope with
this. The HMI system is not the only part in the network, so it also must
be efficient to not interfere with other systems, like network cameras. This
redesign was done by analysing the types of buses, the hardware that could be
used, and the software components needed for this flexible system. The software
components were mapped onto the available hardware to make the architecture
as flexible and efficient as possible.
Two mappings are proposed, one using a Software Gateway, a custom applic-

ation with support for different hardware interface drivers, capable of running
on Windows, Linux and in containers. The other mapping uses WebSockify,
where WebSocket messages are converted to TCP/UDP messages. These two
mappings were combined into a single architecture to combine the features and
possibilities of both systems.
Then a Minimum Viable Product (MVP) was made to test the envisioned

architecture, showing excellent results compared to the current solution while
adding more flexibility and other features.
Using this new HMI system, the HMI developers can interface with more

types of networks, build HMIs that connect to multiple different vehicles and
make distributed HMI systems.

iv

Preface

I have always been interested in cars, primarily Volvo classic cars, which resulted
in my own 1967 Volvo Amazon. I also support my father’s journey of converting
a 1982 Volvo 245 to full-electric. Thanks to him, I was introduced to Volker
Vogel for a thesis project. I was looking for a practical project, and ZF had
this opportunity in Friedrichshafen to work on the Innovation trucks and do a
thesis afterwards. This resulted in me living for ten months in Germany, where
I gained a lot of knowledge about vehicles and automotive buses and met many
international friends.
I will take this knowledge with me for future projects, and I will also use this

to modernise my classic car!

I want to thank Volker Vogel for the opportunity and his outstanding
mentorship and support these past few months. I also want to thank all the
ZF colleagues I had the joy of working with during my time in Friedrichshafen
and Hannover. Lastly, I want to thank Koen Langendoen for his trust and for
coaching me on the journey of creating this thesis out of the project.

Arend-Jan van Hilten

Delft, The Netherlands
26th January 2023

v

vi

Contents

Preface v

1 Introduction 1
1.1 Problem statement . 3

2 Background information and existing systems 5
2.1 Automotive Networks . 5

2.1.1 CAN . 5
2.1.2 CAN FD . 7
2.1.3 CAN XL . 9
2.1.4 LIN . 9
2.1.5 FlexRay . 10
2.1.6 Conclusion . 11

2.2 HMI Communication . 12
2.3 Virtualization . 13
2.4 Existing messaging systems . 16

2.4.1 Industrial interconnection 16
2.4.2 MQTT . 17
2.4.3 ROS . 17
2.4.4 Comparing and possible usage 18

2.5 Conclusion . 18

3 Current system 21
3.1 Human Machine Interface . 21
3.2 Shortcomings and benefits . 21
3.3 Conclusion . 24

4 Architecture 25
4.1 Software components . 25

4.1.1 Hardware drivers . 26
4.1.2 WebSocket Interfaces . 26
4.1.3 HMI Communication . 28
4.1.4 Message Downsampling 29

4.2 Hardware components . 32
4.2.1 Basic components . 32
4.2.2 Hardware interfaces . 33

4.3 Distributed systems . 35
4.4 Mapping software to hardware 39

vii

4.4.1 Software Gateway . 40
4.4.2 WebSockify . 41

4.5 Final architecture . 42

5 Minimum Viable Product 45
5.1 Architecture . 45
5.2 Software tools . 46
5.3 Software components . 48
5.4 Software gateway hardware . 49
5.5 Tests . 50
5.6 Conclusions . 52

6 Conclusions 57

7 Future Work 59

Acronyms 65

A Hardware interfaces 67

B Broadcasting algorithm 73

C Rate limit algorithms 75

D Bus Messages 77

viii

Chapter 1

Introduction

ZF Friedrichshafen AG (ZF) is an international supplier of parts and systems for
personal and commercial vehicles and other industries like maritime and wind.
This includes transmissions, airbags, clutches, seat belts, emergency braking
systems, and many others.
When ZF has a new or improved part that they want to test or showcase to

customers, they sometimes build an innovation vehicle. This is a normal car
or truck that is retrofitted with the new part and other tools to monitor and
test the new elements. A few examples of recent innovation vehicles include a
Volkswagen Touran with rear-axle steering, a truck-trailer combination fitted
with all kinds of efficiency-optimizing parts, like a regenerative braking trailer
with aerodynamic flaps, and a truck-trailer system focused on safety, with sys-
tems like emergency braking, lane keeping and seat belts with haptic feedback.
Some of the new parts are easily visible, like the aerodynamic flaps, and can

be easily shown to anyone interested. The systems like emergency braking and
lane keeping can also be shown quite easily but require some input to enable
the (experimental) features for safety. Other systems like the rear axle steering
and regenerative braking are not that visible or controlled easily and need some
way for the driver and passengers to be enabled or controlled to be visible or
experienced.
All these systems benefit from an Human Machine Interface (HMI) to control

and show the workings of the new parts. All of the previously mentioned vehicles
got an HMI system to control the parts, even in ways they should not be used
in real vehicles. The regenerative braking trailer, for example, is controllable
with a slider to brake or push the truck to let the passengers feel the power of
the system. The motorised seat belts are usually not controllable by the driver
and should only give a haptic warning when there is an unsafe driving situation.
However, in the safety truck, it is possible, using the HMI, to send a command
to the retractors to give a haptic warning or pull the webbing at a high force.
Most of the new innovative parts use Controller Area Network (CAN) to

connect to the rest of the vehicle. All modern vehicles have multiple of these
standardised network buses, so connecting the new part is no problem. Con-
necting an HMI to this bus is more of a challenge because the HMIs are built
as a web app and can be run in any browser on any hardware, like tablets,
phones and computers. These devices do not have a CAN interface, so a hard-
ware gateway with CAN is required. Running the HMI in a browser creates

1

Figure 1.1: Network layout for the innovation vehicles with a variety
of different buses and connected hardware

another hurdle, as websites are not allowed to connect to any internet socket,
but only HTTP requests and WebSocket connections are allowed. Therefore
the hardware gateway needs a WebSocket server. The possible hardware with
CAN (FD) interfaces that could be used often does not have this application
programming interfaces (APIs), so an intermediate system needs to be built to
support the assortment of hardware and to make it efficient. The system needs
to be efficient, as the Ethernet network is also used for other purposes, like video
streams from network cameras, and it should be possible to have a significant
amount of HMIs connected while keeping the resource usage low.

The current HMI system for the innovation vehicles uses Android tablets for
the driver and the passengers to interact with. These tablets run a web app in
a full-screen browser. This makes it easier for the developers to build the HMI
and makes it possible to be used on any device that can run a browser, even in
another network, and it can be tested outside of the vehicle. Tablets are used
instead of laptops or industrial HMIs to give it a more innovative and modern
look.

The current system layout is shown in Figure 1.1. The tablets are connected
through Wi-Fi to a router. The router is connected to the outside network
through Wi-Fi as well to allow remote development and HMIs running outside
the vehicle. Sometimes a Windows or Linux computer is mounted inside the
vehicle for the innovation parts, like an Nvidia Jetson Nano for object detection.
Gateways are added to connect to the vehicle buses. The current system uses
the ESD EtherCAN/2 that has a WebSocket interface. The web app on the
tablets connects to this interface. On the CAN, all kinds of electronic control
units (ECUs) are connected and added.

This current system has worked for over ten years since the first HMI with this
system was made with it in 2012. In the meantime, other buses, like Controller
Area Network with Flexible Data-rate (CAN FD), Local Interconnect Network
(LIN) and FlexRay, have emerged to improve speed, increase message data

2

size, improve timing constraints and reduce cost. These message buses can all
be converted to CAN by using an extra gateway, but this requires additional
parts, extra configuration and most importantly, more space, which is often
constrained, especially in passenger cars. A new gateway with all those buses
and a WebSocket interface would be perfect, but it does not exist yet.

1.1 Problem statement

No system was found that can interface with all the different buses while provid-
ing a WebSocket interface. Therefore a new gateway system for the next-
generation innovation vehicles must be designed to interface with all the different
new network buses. The system must also support specific software features (see
below) to be better usable for an HMI. The challenge for this thesis is thus

How to (re)design a Human Machine Interface (HMI)
system for future innovation vehicles.

The requirements for this HMI system, as defined by ZF and by inspecting
current HMIs, are as follows:

1. Vehicle Connectivity:

(a) CAN bus

i. Normal & CAN-FD
speeds

ii. 11-bit & 29-bit message
IDs

iii. Configurable speeds

(b) LIN

(c) Preferred: FlexRay &
Automotive Ethernet

2. HMI Connectivity:

(a) WebSocket server:

i. Bi-directional and mul-
tiple HMI connections

ii. Message decoding mod-
ule in JavaScript (JS)

iii. Filtering on mes-
sage/bus, whitelisting

iv. Efficient messaging,
bundling of messages

v. downsampling of mes-
sages

vi. <75millisecond (ms)
(13Hz) roundtrip time

(b) HTTP-server:

i. Serve HMI and debug
pages

ii. >500MB size possible

3. Configurability:

(a) Modular system

(b) Centralised

(c) Network settings

(d) Website for configuration

(e) HTTP-server settings

4. Hardware:

(a) Production type hardware

(b) boot-time: <30s

(c) Must have a housing

(d) Size: 20x30x10cm to fit eas-
ily in vehicles

5. Other:

(a) Website with state of differ-
ent modules

(b) Supply voltage 10-32V

(c) Per-project budget

i. Small HMI project:
<€1k

ii. Big HMI project:
<€5k

(d) No software licensing per
developer or device

3

Requirement 2(a)vi is there to have a fast enough reactive system without
pushing the network and devices to the limit. 13Hz is the standard human visual
refresh rate, so anything more rapid than that is sufficient[27]. Getting more
data only puts more load on the tablets, network and intermediate components.
The new HMI should be easily configurable, preferably from a centralised point,
like the HMI code. A centralised configuration should make it possible to change
hardware and lets HMI developers test outside the vehicle.
The challenges of this project were the interfacing hardware, how to com-

municate with them, which possible hardware exists for the Software Gateway,
could virtualisation help for this project, how to design an (software) architec-
ture for the complete system and implementing that for the Minimum Viable
Product (MVP).
The types of buses are discussed in Section 2.1, along with virtualisation in

Section 2.3 and other messaging systems in Section 2.4. The current system
that has worked for over ten years is looked into in Chapter 3. In Chapter 4,
the global architecture is discussed. The interfacing hardware is researched in
Appendix A to look into the possible hardware, which hardware is already in
use and which hardware is interesting to add. In Section 5.1, the architec-
ture of the MVP is shown. The gateway hardware and types are discussed in
Section 5.4, and the specific architectures are shown for each hardware interface
in Appendix A.

4

Chapter 2

Background information
and existing systems

As discussed in Chapter 1, multiple types of automotive buses are in use in
modern vehicles. These are explained in Section 2.1, and a conclusion and
implications for the HMI system are drawn in Subsection 2.1.6. Besides the
vehicle communicating with the system, the HMI must also communicate with
the rest of the system. The types of communication that can be used for the
HMI-gateway communication are listed in Section 2.2. Then Docker and its
advantages are explained in Section 2.3 as it helps deployment to gateway hard-
ware and allows running code on the routers in use. In Section 2.4, some other
message based systems are discussed and their use cases. To conclude, Subsec-
tion 2.4.4 explains what can be taken from those systems and why they cannot
be used for the HMI system.

2.1 Automotive Networks

Where oldtimers only have a simple radio, some lights, and a distributor as elec-
tronics, modern cars have many more systems on board. From motor control
to safety systems and entertainment systems to even vehicle-to-vehicle commu-
nication in the future. All these systems need to communicate with each other.
In classic cars, there are only some analogue signals and possibly some digital
signals. These ’protocols’ are not sufficient for more modern cars. Therefore
multiple different communication buses were invented. All modern cars have
multiple of these buses, and often multiple types are used for different purposes.
In the following sections, a few buses will be explained, and a lookout on future
network protocols.
These communication buses operate on the data-link layer and physical layer

of the ISO model[3]. Often no other extra layers are in-between the application
and the data-link layer, but protocols like SAE J1939 can be used.

2.1.1 CAN

The CAN bus is a multi-master network that uses a single twisted pair of wires,
consisting of CAN-H(igh) and CAN-L(ow). The two wires have termination

5

Figure 2.1: CAN frame with added stuff bits in purple. Ken Tindell,
Canis Automotive Labs Ltd, CC BY-SA 4.0 https://creativecommons.

org/licenses/by-sa/4.0, via Wikimedia Commons

resistors at each end to pull the signals to ∆0V . This is the recessive state
(binary 1) and is not actively powered. When CAN-H is actively pulled high,
and CAN-L is actively pulled low by a controller (∆2V , dominant state), this
is received as a binary 0.

The CAN bus operates on a set baud rate, and each node must communicate
at the same speed. This is often 250 kilobit per second (kbps), 500 kbps or
maximum 1megabit per second (Mbps). To make sure that timing errors do
not cause problems, bit stuffing is added. For every 5 bits that are the same, an
extra bit is added, which is the inverse. At the receiving nodes, this extra bit
is removed, and the extra signal flank is used to synchronise the clocks. This
way, all the nodes will stay in sync and not count more or fewer bits than are
sent. The downside is that a CAN message can be a different size and take a
little longer to transfer, up to 24 extra bits [28].

The CAN bus works best if it is routed like a single-line network. Star topo-
logies and trees should be avoided. It is possible to have drop lines branching
off the main line. These should not be too long, and the total network should
not be too long (depending on baud-rate) to prevent propagation delays giving
timing problems between multiple nodes sending at the same time[26].

The CAN bus is a message-oriented bus where each message is broadcast to
all nodes in the network. Each message has an ID of 11 bits (CAN 2.0A) or
an extended ID of 29 bits (CAN 2.0B). A node can often receive both types of
message IDs. The message IDs identify what data is being sent and also set
the ordering of the messages. Messages with a lower ID have precedence over a
higher ID. This is done with carrier sense multiple access (Carrier Sense Multiple
Access (CSMA)) with non-destructive arbitration[29]. This is done by sending
the message ID over the CAN bus and also sensing the current state of the CAN
bus. If two nodes try to send a message at the same time, then they will start
with sending the ID bit by bit, Most Significant Bit (MSB) first. If the bit value
is the same, then the nodes will sense the same value as they send. If node A has
an ID with a 1 (recessive) and node B’s ID has a 0 (dominant), then node B will
sense the dominant, actively pulled value and continue. Node A, on the other

6

https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0

hand, will also sense the dominant bit while it tries to send a recessive bit. This
means that node A lost the arbitration phase and should stop sending. Node
A can try in the next slot. This method ensures collision avoidance without
wasting time slots (non-destructive), meaning that if messages are waiting to
be sent, every time slot, the message with the lowest ID will be broadcast.
Normal IDs have precedence over extended IDs. The message ID priority

means that more important messages should have a lower ID than less important
messages. After the arbitration phase and one node can continue sending, it
will send the length of the data. For the CAN bus, this can be 0-8 bytes. Then
the data is sent. After the data, there is a CRC value to let the receiving nodes
check the data bytes. If the data is received correctly, all nodes should send a
dominant bit to acknowledge the correct reception of the message in the single
ACK bit slot. This will let the sending node know that it is done and can
remove the message from its sending queue. When a node does not receive an
acknowledgement, then it can retry and stop after multiple failed tries. The
acknowledgement does not indicate that the receiving nodes do anything with
the data, just that the transmission was successful to at least one node.
Figure 2.1 shows a single CAN message without and with bit stuffing, the

purple bits. It has an 11-bit ID, 0x14 (green bits), with 1 data byte, indicated by
the yellow bits. If it is a 29-bit ID, then the IDE bit (identifier extension) would
be 1, recessive. This also makes it so that 11-bit identifiers have precedence over
29-bit IDs, as the IDE bit is dominant with an 11-bit message ID. The data is
sent after the length, red. The CRC check bits are sent afterwards, and finally,
the ACK slot is there for the other nodes in the network to acknowledge the
message.
After receiving a message, a node can decide to process/use it or just discard

it. Often a node has a bitmask filter to quickly check if it wants to receive this
message. Messages do not encode what kind of information they have, like XML
or JSON, but the receiving and sending node need to have common knowledge of
how to encode the information. This is often done with a DBC file. This file has
a description of the whole network, each message, and what signals they contain.
The signals each have a type, like int, unsigned int, or float, and have a location
in the message, described by start bit and length. Signals can use multiple
message bytes, and then the byte order is also important. The two variants
are Motorola and Intel. Motorola is big-endian, where the most important byte
is sent first. Intel is little-endian and sends the least important byte first[21].
Multiple signals can also be put in a single byte. This way, multiple types of
signals can be encoded in a message, and there is less overhead on the CAN
network if all bits are used for signals.[6]
64 bits is sometimes not enough data to be communicated. Higher-layer

protocols were created to extend this limit. In commercial vehicles like trucks,
tractors, and heavy-duty vehicles, the J1939 transport protocol is used for send-
ing up to 1785 bytes in a single ’message’[8].

2.1.2 CAN FD

After 26 years with the normal CAN bus, introduced in 1986, car manufacturers
wanted to send data with higher rates and send more data at a time. This
became Controller Area Network with Flexible Data-rate (CAN FD), released
in 2012, an upgrade over CAN. This new standard (ISO 11898-1:2015) is already

7

https://www.iso.org/standard/63648.html

Figure 2.2: CAN FD frames compared to normal CAN frame. [7]

in some innovation vehicles and requires gateways to have the needed data on
a normal CAN-bus.

CAN FD increases the maximum data size to 64 bytes (8x more than CAN)
and adds flexible data-rate. The flexible data rate is only applicable to the (64
bytes) data part of the CAN FD message. A sending node can select to enable
or disable the faster data rate. Like normal CAN, the arbitration phase, the
first part of each CAN message, is done at a maximum of 1Mbps. This is to
make sure there are no problems with signal propagation through the network.
After a single node wins the arbitration phase (depending on the message ID),
it can switch to a higher baud rate by setting the bit rate switch. Then it can
send the data at a higher baud rate. This can be done because there is just a
single node transmitting on the system, and it does not have to listen to other
nodes on the bus. Therefore, there is no signal propagation to worry about.
The higher baud rate must be configured beforehand on each node and must be
the same. [11][2]

The data rate can go up to 8Mbps but is often set to 5Mbps. Besides the
increased efficiency, also the error checking was improved in comparison to CAN:
the Cyclic Redundancy Check (CRC) length is 17 or 21 bits depending on the
data length instead of 15 CRC bits in normal CAN. These bits can be sent at
the higher rate, so the time impact is less.[7]

Figure 2.2 shows a normal CAN message compared to a CAN FD frame with
the same data length and disabled bit rate switch. This frame takes a bit longer
to transfer on the network, but when the BRS is enabled with a four times
higher data rate (3 rd frame), then the time it takes on the bus is much shorter.
The last frame shows a message with a ten times higher data rate compared
to the arbitration rate and 64 data bytes. This frame takes a little longer to
transfer compared to a normal CAN frame with 3 bytes but carries more than
20 times more data. A 10x difference is possible, as normal CAN usually runs
at 500 kbps and CAN FD can run up to 8Mbps.

CAN FD controllers are backwards compatible with Classical CAN, so a node
with a CAN FD controller can be connected to a CAN network. A CAN con-
troller is not forward compatible with CAN FD, so a mix of Classic CAN and
CAN FD nodes must all fall back to CAN.

8

According to Reindl et al., CAN FD is 60% faster than CAN when using 8
user data bytes and a data rate of 4Mbps while still using the same order of
processing time and energy [18].

2.1.3 CAN XL

The latest version of CAN is Controller Area Network Extra Long (CAN XL)
and was introduced in 2020. CAN XL has been developed to support an even
higher data rate and to fill the gap between CAN FD and automotive ethernet
(100BASE-T1). CAN XL is not yet in use in (innovation) vehicles, but the HMI
system should still be able to connect with it when it does get included in cars.
CAN XL keeps the success factors of CAN FD and improves it similarly as

CAN FD versus CAN. It has the same arbitration phase as CAN at a maximum
of 1 Mbps. The data is then sent at a rate from 1Mbps up to 20Mbps. It also
increases the possible data size to 2048 bytes to support Ethernet tunnelling
over CAN XL. Another difference is that it just uses 11 bits for priority ID and
adds a 32-bit acceptance field in the data phase for addressing or message IDs.
This way, the arbitration phase is over more quickly while still having a big
range of IDs.
CAN (FD) does not have a flag to indicate what higher level protocol is used,

like in Ethertype in Ethernet frames indicating IPv4, IPv6, or LLDP, but the
data in the message has to indicate that. CAN XL adds an 8 bit service data
unit type (SDT) to indicate this. This SDT can indicate multiple different types
like normal messaging, CAN (FD) tunnelling, and Ethernet tunnelling.
CAN XL is also backwards compatible with CAN FD, meaning CAN XL

nodes can receive and send messages from and to CAN FD nodes using the
CAN FD message and CAN XL nodes can send CAN XL messages at a faster
bitrate (8Mbps max with mixed networks). This is possible because the CAN
FD and CAN XL headers are the same until a CAN FD reserved bit that it
expects to be 0, but when it is 1, the CAN FD node will go into a passive state
until the next message. CAN XL nodes will detect it is a CAN XL message and
switch to CAN XL mode. [19] [12] [20]

2.1.4 LIN

While some systems absolutely require the fast speeds of CAN or CAN FD,
some other systems do not need such speeds. Those systems include door con-
trols, window controls, heating systems, and other non-safety critical systems.
Equipping those systems with CAN controllers would be overkill. Therefore the
LIN bus was introduced to have a cheaper alternative that is supported by mul-
tiple car manufacturers. The safety innovation truck had a steering wheel with
touch sensors for hands-on detection. This system used LIN to communicate,
and for the truck, a Peak-System LIN to CAN gateway had to be used and
configured after a failed attempt with an MRS gateway. If the HMI system had
had LIN support, it would have saved several days developing, configuring, and
debugging.
The LIN bus uses a single wire with a (12V) signal relative to ground instead

of the differential pair of CAN. A network consists of one master and (up to 16)
slaves. Figure 2.3 shows a LIN frame. The master always initiates the commu-
nication by sending a header with an ID it wants to receive or send. The eight

9

Figure 2.3: LIN frame. [4]

sync bits are for syncing up the clock of the slaves with the master. The master
or any slave will respond after the header and send the data of up to 8 bytes.
Using a single master instead of a multi-master setup like CAN removes the
CSMA and arbitration requirement. To have a frequent data interval, the mas-
ter has a schedule table of when to request or send specific messages. The LIN
protocol can be implemented with a Universal Asynchronous Receiver Trans-
mitter (UART) interface, which is often available on microcontrollers. A LIN
network can work up to 19.2 kbps. [9] To interface with the rest of the vehicle,
the master often also has a CAN connection.

Using a single wire and reusing the UART interface of a microcontroller makes
it cheaper than CAN.

2.1.5 FlexRay

Another fairly new automotive bus standard is FlexRay. FlexRay (ISO 17458-
1:2013) was designed to have better scheduling guarantees. The CAN bus is
event-driven with message priority, resulting in the possibility that a lower pri-
ority message can be delayed for a (relative) long time. FlexRay solves this
problem by having a Time Division Multiple Access (TDMA) scheme. This is a
cyclic scheme with a static segment and a dynamic segment. One such scheme
with messages is shown in Figure 2.4. The static segment consists of multiple
slots, each reserved for an electronic control unit (ECU). Each ECU can have
multiple slots. The ECU can then decide to send data in its slot or not, and
then it will be an empty slot that cycle. The example shows that on Channel
0, ECU B did not transmit in its slot. The data can be 254 bytes long.

The dynamic segment is for messages that are less critical and can have a
longer time delay. The dynamic segment is also broken into slots. Each possible
message gets a minislot. This is when the ECU is allowed to start transmission
and is thus short compared to the transmission time. If an ECU decides to send
a message, then the following minislots are pushed back to after the transmission
of the message. The dynamic segment always has the same duration, so messages
with a lower priority and, thus, a later minislot will have to wait until the next
dynamic segment, where they might be pushed back again. This pushing back
is also shown in Figure 2.4. Node D sends message D2 on Channel 0, and thus
message C2 is pushed back. On Channel 1, node D did not send a message, and

10

https://www.iso.org/standard/59804.html
https://www.iso.org/standard/59804.html

Figure 2.4: FlexRay cycle. [25]

thus C2 was sent earlier.

The configuring of the dynamic section and dynamic segment requires more
configuration than a CAN bus and cannot be changed on the fly like with CAN
bus, where it is possible to add a node and have it working without configuring
anything on the other nodes. Each FlexRay node must have the same timing
configuration for the segments to have the FlexRay bus working. The FlexRay
network can be more diverse than a CAN bus. FlexRay allows for a multi-drop
bus like CAN bus, but a star network and a combination (hybrid) network is
also allowed. A FlexRay bus uses two twisted pairs, channels A and B. This
increases fault-tolerance or increases bandwidth, up to 20 Mbps. Compared to
the normal CAN bus, FlexRay offers determinism for message timing, increased
data size, and faster transmission, but at the cost of more complexity, and the
complete network must be designed and configured. [15] [22]

2.1.6 Conclusion

All these buses use different means for collision avoidance and priority, and they
differ in speed, data size and other details. However, they are all based around
a simple message ID and a message of some bytes. These messages are stateless
and cyclic, so message dropping is not a problem. As they are not connection-
based, like modern ethernet, but a broadcasting bus, it is easy to pick up data
from these buses without interfering with or changing parts of the vehicle.

11

2.2 HMI Communication

The current generation HMI used in the innovation vehicles are all based on a
tablet running a web app. This is easier for the developers, as they only have
to use the normal browser stack of HTML, CSS, and JavaScript without any
other lower-level languages. It is also very easy to develop, as the web app will
also run on any computer, tablet, or phone. This way debugging is made very
easy, as debugging a web app is easier than debugging a compiled app installed
on a tablet.
Using a browser-based HMI also imposes some drawbacks. Not all protocols

are allowed to be used, as security is very important. This is needed because
the browser will (often) run all the JavaScript present in a webpage. The three
protocols to request data that are allowed are HTTP requests, WebSockets, and
WebRTC.

HTTP Requests

HTTP requests are the same requests that browsers issue when loading a page
or requesting an image. HTTP requests have a high overhead per request and
therefore are quite slow. Each message to and from the server requires a new
request as the connection cannot be kept open. A server is also not able to send
data without that data being requested or waited on by a browser.
There are two methods to get frequent updates from a server with HTTP re-

quests. The first method is polling. This method repeatedly starts a connection
to check if there is an update and the server responds immediately with the
data or an empty response. This method has a high overhead and is not very
efficient if the data rate is lower than the polling interval. The other method is
long polling. Here the server does not respond with an empty message if there
is no data, but it waits until there is data or a timeout passes. This reduces the
number of HTTP requests and lowers the overhead, but requires the server to
keep the connection open and requires the client to restart the request when it
receives data.
Figure 2.5 shows HTTP polling on the left. The client only receives data after

each request.

WebSockets

WebSockets are an upgrade over HTTP Requests. A WebSocket connection
is started in the same way as an HTTP request, but then is switched to the
WebSocket protocol when the browser requests it and the server accepts the
upgrade. AWebSocket connection allows for full duplex communication without
it being requested from the browser or the server. The server can thus send
data when it wants to, independent of what the client sends. This protocol is,
therefore, beneficial for systems with frequent updates. It is firewall and proxy
friendly, like HTTP requests, and does not require changes on intermediate
devices because it uses the normal HTTP protocol and ports. WebSockets
use less bandwidth than (polling) HTTP requests and use less memory on the
client[23]. The latency is also less than the HTTP request methods[16].
Figure 2.5 shows a WebSocket connection on the right. A connection is once

opened and data can flow anytime from server to client and vice-versa.

12

Figure 2.5: HTTP Requests vs WebSocket [14]

The current HMI uses a WebSocket connection to the EtherCAN/2 gateway
to send CAN settings and send/receive CAN messages. More information on
the ESD EtherCAN/2 will be given in Section 3.2.

WebRTC

Web Real-Time Communication (WebRTC) is a set of APIs and protocols for
browsers to communicate and stream video, audio, files, or any other data peer-
to-peer. It uses a server to detect the IP address and port that the clients might
be reachable on. Then two browsers try to connect to each other using this
information. This is needed to bypass NAT and firewalls. If direct communic-
ation is not possible, WebRTC will fall back to using an intermediate server
to communicate. When a communication channel is created, the peers will in-
dicate what protocols they support and what kind of data they want to send.
By negotiating a common supported set of protocols, a video or data stream is
established and a peer-to-peer connection is set up.[24] As WebRTC is used for
audio and video with peer-to-peer communication, it is not usable for server-
client communication and thus not usable for the HMI system. It could be used
for inter-HMI communication.
WebRTC is often used for online video calls like Jitsi or MS Teams.

2.3 Virtualization

Virtualisation could be used for running applications on hardware or operating
systems that the applications were not developed or compiled for. The routers
in use (MicroTik HapAC2) support virtualisation with Docker containers, so
they could serve as a WebSocket server and connect to the hardware interfaces

13

on the other end. This would lower the number of components, price, and space
needed for an HMI system. Besides acting as a gateway, the router could also
be used to run a web server to fulfil requirement 2b, serving HMI and debug
pages.
Docker is an ecosystem for container virtualisation. It is essentially a system

for running code in a virtual machine (VM) without all the overhead of a VM,
like the operating system, hardware emulation, and scheduling. Running an
application in Docker versus a VM can improve the speed up to 26 times[1].
Docker containers can also be used for the development work of software

gateways. Some embedded Linux hardware, like the ZF ProConnect, require
a different toolchain with some limitations, and a ready-made container would
decrease the setup time for the next system developer.

Containers

A container is a running instance of an image. These images contain a base
layer of an operating system with layers of file changes like software packages
and code. This layered copy-on-write file-system approach improves start time
and cachablility of intermediate layers, resulting in lower build times[5]. These
images can be shared or uploaded to image registries like Docker Hub and then
run on other machines. An image has a specific CPU architecture, like x86 64 or
ARMv7. An image can only run on the architecture it was built for, except if an
emulator like QEMU is used. It is possible to cross-build an image for another
architecture than the machine it is built on. It also has to use an emulator for
that. An image can run any Linux flavour without any restrictions from the
machine’s Linux flavour.
Docker is mostly used on Linux operating systems or Windows Subsystem

for Linux (WSL). Docker is able to run Windows containers on Windows hosts,
but that is not used that often and requires software licenses.
A container is isolated from other containers, so they will not interfere with

each other. They can have access to a network, so containers are able to com-
municate in that way. Using this isolation, it is also possible to run multiple
containers with the same image to have load-balancing for other distributed
systems. It uses Linux concepts like namespaces and cgroups to make the
containers run in isolation and cannot interfere with each other or the main
system. For the code in a container, it seems like it is running on real hardware
without the Docker layer in between. Using containers makes it much easier to
make a portable system that can be run immediately without installing extra
packages.[1]
Building an image is often done using a Dockerfile. This file contains the base

image name, like Ubuntu, Alpine, a lightweight image, or GCC, for compiling
code. After the image, multiple copy and run commands can be specified for
copying files from the host to the container and running commands in the con-
tainer. Each of these commands creates a new layer that describes the changed
files in that layer. The consequence of this layered copy-on-write approach is
that every layer adds size to the image, even removing files. This can be reduced
by squashing the final image, making it into a single layer.
Figure 2.6 shows this layered filesystem approach. Each addition is marked

with an A, each delete with D, and changes with C. Only the files that are
added or changed when looking from the top are visible to the container, and

14

Figure 2.6: Copy On Write Layers for Containers [10]

it will take the latest version, the file version in the latest layer it was added or
changed.

A better approach to minimising final images is to use a multi-stage Dockerfile.
This uses multiple images, where only the final image is exported. For compiling
a C++ application, a lot of libraries and a compiler are required, but for running
that application, fewer files are needed. A multi-stage build can help, where the
first stage builds the application and the second stage is a slimmed-down image
where the executable with some required libraries is copied to. The resulting
image then does not include the intermediate files and the huge compiler image.

Usage

Docker is often used in software development for Continuous Integration / Con-
tinuous Delivery (CI/CD), where each change of the code is checked, compiled,
tested, and (possibly) released to quickly and easily check that the changes do
not introduce bugs and that the code still works. Gitlab CI/CD can use Docker
as a runner, a system to run the commands in the .gitlab − ci.yml file, and
includes a container registry to store images that are generated by and for the
CI/CD pipeline.
For software development, Docker is also advised to easily set up a reprodu-

cible complex development environment. The benefit of using containers is that
a developer does not have to install the tools on their machine, and it makes
sure that every developer on a team has the same version of the tools and has
packages and libraries in the same locations. Using containers makes it easier
to switch to a newer/older version without messing up their original system.
When a system, like a website backend or a database, is developed, then

it must be published or put into operation (DevOps). Docker can also help
with this. This is often done together with Kubernetes, where the containerd

15

systems are often used. Containerd is a subsystem of Docker that is the actual
container runtime. Containerd used to belong to Docker, but it is made into an
independent system.
Kubernetes manages containerised workloads and scales the number of con-

tainers based on workload or other requirements. A Kubernetes system consist
of a cluster and a set of pods. A cluster is a set of machines (nodes) that can
run the containers. There is one master node that schedules and maintains the
cluster. The other nodes will run the containers. When there is a high load, the
master node will start more containers. A pod is a set of containers that work
together, but often it is a single container. A pod can be started on multiple
nodes for load-balancing. A website can, for example, have a database pod for
storing data and an Apache pod for serving web pages. When there is a high
load for static files, the Apache pod can be run multiple times concurrently, but
the database pod does not have to. When there is a high load for dynamic files,
then the database pod also has to be scaled up.
The MikroTik routers currently in use also support Docker containers since

RouterOS 7.5. This can be used to run any (lightweight) container on the
router. Other Mikrotik routers like the RB5009UPr+S+IN have more memory
and storage to run bigger applications.

2.4 Existing messaging systems

The HMI system should essentially be a message broker: sending data from a
CAN (FD) bus to an HMI and vice-versa. There are, of course, other message
brokers and gateway systems in use to convert signals, interfaces, and protocols
to any other type. Inspiration for architectures and components can be taken
from them, and the HMI system could even interact with them when required.
Below are some existing systems and architectures from previous work.

2.4.1 Industrial interconnection

Jian Zongmin et al. designed a software-defined gateway for industrial inter-
connection [13]. Their goal was to connect multiple industrial devices, like Pro-
grammable Logic Controllers (PLCs), in a plant with different protocols. They
designed and implemented a gateway running on an ARM Cortex-A8 processor
with embedded Linux. They designed the system where a configuration file se-
lects a driver instance for each connected device depending on the application’s
needs. Then the in-memory database stores the connection information and
data. This data is then sent to other drivers when they need information from
the database and to an OPC Unified Architecture (OPC UA) service. OPC
UA is an industrial automation interoperability standard developed to abstract
away the PLC-specific protocols, like Modbus. Another connection to the in-
memory database is made to an MQTT (Subsection 2.4.2) service to connect to
IoT devices.
The industrial interconnection system is mostly designed to connect all devices

to all devices, where the vehicle gateway should connect the HMI to the vehicle
buses, where the vehicle buses do not get data from other buses. However, it
shows how configuration could be used to select drivers and build a flexible
system capable of connecting to different buses or subsystems.

16

2.4.2 MQTT

MQTT is often used in Internet of Things (IoT) systems to communicate sensor
data to a central point. MQTT uses a publisher/subscriber model to send mes-
sages. It needs a broker that each client connects to over the internet using TCP.
The clients then can subscribe to a topic and send messages on a topic. The
broker then forwards the messages to each subscriber. MQTT is optimised for
resource-constrained devices with possibly limited networking and has Quality
of Service (QoS), where the publisher defines the service level. The service level
can be 0 (at most once), 1 (at least once), or 2 (exactly once). MQTT messages
are all binary messages, with a very small overhead per message.

MQTT could be used for the HMI system, as it is possible to use an MQTT
client in the browser. However, it has a lot of features that it does not need, like
QoS, and it requires a broker. This broker would then only route all messages
from an application with the hardware interface drivers to the HMI, as there are
no hardware interfaces with acceptable MQTT support. A system without an
extra broker would be more efficient, resulting in no MQTT. MQTT could be
added to communicate with other systems with MQTT, like IoT devices, when
that need exists, but that is out of the scope of this project and not needed for
the HMI system at the moment.

2.4.3 ROS

Robot Operating System (ROS) is also a messaging middleware like MQTT,
but targeting more towards robotics and less resource-constrained devices. A
ROS system is often on a single internal network, contrary to MQTT, where
clients can be connected from anywhere, given the broker is accessible. ROS
also has the notion of a main controlling unit, the ROS master. This master
listens for nodes (the clients) connecting to it and will keep track of which
topics it subscribes to and which topics it publishes. When another node joins
the system and subscribes to published topics, the ROS master will let the
publishing node know about the subscriber, and these nodes will set up a peer-
to-peer connection for their common topics. The ROS master, therefore, never
receives the messages. This makes the master slimmer than if it would route
the messages. The nodes, however, have to do the networking, resulting in a
higher load on the nodes and more traffic on some routes, and it does not work
great with firewalls and NAT routers.

ROS has support for CAN (FD) with some packages like socketcan interface,
and other hardware interfaces could be connected to with small nodes bridging
between ROS and the hardware driver.

Connecting to ROS from a browser is also possible using roslibjs and rosbridge,
which has a WebSocket server.

Using ROS would be possible and would make a flexible system that would be
able to connect to other systems as well, but the overhead of the ROS master,
which only runs on Ubuntu and Windows x86, removing the possibility to use
the routers or other hardware, like the ZF ProConnect, to host the gateway
functionality.

Besides message passing and coordination, ROS also supports packaging nodes,
distributing those nodes, and simulating robots. It is more like an ecosystem
than just a package to include for sending messages.

17

http://wiki.ros.org/socketcan_interface
https://github.com/RobotWebTools/roslibjs

2.4.4 Comparing and possible usage

MQTT and ROS are great pieces of software to connect a flexible and diverse
network of clients over Ethernet. They do not work over other networks, like
CAN or FlexRay, without extra software on both ends. Stefan Profanter et al.
looked into these two middleware systems. Their research shows that MQTT
generates the least amount of network traffic for setting up a connection and
sending data, showing that it is really meant for network-constrained devices.
ROS needs the most data for a node to setup a connection to the ROS mas-
ter, but when connecting is done, the size of the messages is almost as small
as MQTT, only 3 bytes more (5 vs 8 bytes overhead) on a message of up to
10.000 bytes. The computing overhead of ROS and MQTT are both high on
average. [17]

Messages could be sent using a ROS to CAN gateway, and then the HMI
could connect with a JavaScript gateway. Having a topic for each message ID
would make the topic list huge and would create a lot of TCP connections.
Also, using MQTT and ROS on a gateway would be overkill and not beneficial,
as the (global) architecture is always the same, the amount of which buses it
is connected to and the amount of HMIs. Converting each binary message to
another message, sending it to another process on the same machine, and then
unpacking it and sending it over a WebSocket connection is a lot more overhead
than just converting a received message to a WebSocket packet. There are also
no hardware gateways supporting ROS, and the one hardware series found that
supports MQTT, the Ixxat CAN@net NT devices, only allow for a maximum
of 128 selected message identifiers. This solution would not work for a diverse
system where any received message could be required on the HMI. Therefore
using ROS or MQTT does not solve the problem, and these systems cannot
be used for the main message passing. They could be used for sending data
between software gateways or other systems, but that is out of this project’s
scope.

2.5 Conclusion

One of the main questions of this project is how to take all the different networks
and buses into a single usable type without too much overhead. As shown in
the previous sections, CAN, CAN FD, LIN, FlexRay, and other vehicle buses
work based on a shared medium with messages with an ID and some payload
bytes that are broadcasted to all the nodes in the network. These messages are
all connection-less and often are cyclic, sending the same data over and over.
Therefore it is possible to build a message definition where all the message types
fit in, and it is acceptable to drop or delay messages for optimisation purposes.
ROS and MQTT are interesting technologies to connect multiple computers to-
gether and have a standardised messaging system. As this project often only
has a single general-purpose computer and multiple HMIs that are not able to
connect to those systems, those systems are not usable for the main communic-
ation. To communicate with the webpages running on the tablets, WebSocket
is the fastest and best solution, as it opens a full-duplex communication channel
with the least overhead, lowest latency and lowest memory usage. It is possible
to use Docker containers on the routers to run code, like a software gateway

18

or web server. Besides that, Docker can also be used to distribute developer
images to easily distribute a working set of tools.

19

20

Chapter 3

Current system

The current system consists of an ESD EtherCAN/2 gateway that has a CAN
and an Ethernet connection. The gateway is connected to the router in the
vehicle. This router has Ethernet and WiFi for the tablet to connect to and the
router (often) also connects to a WiFi network outside the vehicle. This way,
the developers can also connect to the gateway from outside to develop, test or
show the HMI. This setup is shown in Figure 3.1.
The MicroTik HapAC2 is used in almost all projects as this is a very config-

urable and complete router that can be scripted.

3.1 Human Machine Interface

The HMI is running on a tablet as a webpage in a full-screen browser. The
tablet connects to the router via Wi-Fi, and then the webpage can connect to
the ESD EtherCAN/2 using a WebSocket connection. The data received from
this CAN gateway is the same data sent on the bus without parsing or decoding.
The HMI does the decoding based on a CAN database (DBC) for the bus it is
connected to and will then use that data to visualise what is happening in the
vehicle. The HMI can also send data to the EtherCAN/2 to control devices on
the CAN-bus.

Decoding on the HMI results in a lower network overhead, makes it possible
to change the hardware interfaces and gateway easily, and does not strain the
gateway.

3.2 Shortcomings and benefits

The current gateway is the EtherCAN/2 from ESD. This gateway only supports
CAN, so no CAN-FD or any other bus. The gateway has an Ethernet port and
a socket interface running on that with the ESD ELLSI protocol, a proprietary
binary protocol. This protocol is also supported on a WebSocket interface,
running on the same device currently used for the HMIs. The protocol allows
any webpage/application to connect to it, set the CAN baud rate and some
broad filters. The EtherCAN/2 allows multiple concurrent connections, allowing
for multiple connected HMIs. This way, no other hardware is needed besides
the tablet, router and EtherCAN/2.

21

Figure 3.1: Current system with an EtherCAN/2, router and a single
HMI.

The EtherCAN/2 does not store the CAN configuration, so the HMI has to
send some commands to set up the baud rate and (basic) filters. This makes
it easy to swap hardware as only the webpage has the configuration and will
upload it at every start. And when a setting needs to be changed, it is done
in only one spot, and a reload of the HMI will push them to the hardware
interfaces.

The data is sent over a WebSocket connection as binary data and decoded
on the HMI. Each WebSocket message has a little overhead of a few bytes(2-
14) in addition to the lower levels network stack overhead(TCP). Sending each
CAN message in a separate WebSocket message would result in a high overhead
compared to the transferred information. To improve this, the EtherCAN/2
packs multiple CAN messages into a single WebSocket message. This results
in lower overhead but adds latency because each CAN message is received in
sequence from the network but is sent to the HMI in a single packet. Tests show
that the EtherCAN/2 uses 10ms time slices for each new WebSocket message.

While packing multiple messages into a single WebSocket message improves
the network and hardware load, reducing the number of messages by filtering
and rate-limiting gives an even better improvement. The EtherCAN/2 only
supports two range filters, resulting in a lot of unwanted messages passing the
filter and being sent unnecessarily. A better filter that selects specific message
IDs or multiple smaller ranges will take out more unneeded data and would
result in a better system.

Some data is sent cyclically every 6ms, with often the same data as previous
messages. Safety systems, for example, send and require such short intervals,
like a seatbelt retractor constantly requiring a message that it should not retract.
These intervals are too fast for the HMI and create an unnecessary load on all

22

the systems. A gateway that would limit the rate of the data to the HMI to
50ms, for example, would take out 7 out of 8 messages, resulting in an 87.5%
reduction. The EtherCAN/2 does not have these features, but a future system
should have that possibility.
A gateway could use a binary protocol to optimise the data transfer that

minimises the binary CAN messages only to send the data bytes that were sent
on the bus. The EtherCAN/2 does not use this. A CAN message can be 0-8
bytes, and sending a few bytes less can improve the throughput of the system
and, together with message packing, could make it more efficient on the network,
as the other hardware has enough CPU power for the additional minimising.
Extra gateways are needed to connect other buses to the EtherCAN/2, bridg-

ing the wanted bus and CAN. One example is using a PEAK-System PCAN-LIN
gateway to connect a steering wheel with LIN to the HMI. Adding these extra
gateways requires more tools and more time to develop and does not improve
the stability of the complete setup.
Another big shortcoming of the EtherCAN/2 is that each bus needs a new

EtherCAN/2, as it only supports a single CAN-bus. This resulted in the
Efficiency Truck having 4 EtherCAN/2s, with each HMI connecting to all 4
of them. Having a hardware gateway with multiple CAN (FD) interfaces would
result in fewer connections, less network overhead and a more stable system.
Also, connecting to a single gateway instead of multiple gateways would decrease
network loads on those gateways as they would only connect to a single-parent
gateway.
The device has a web server for small websites(<10MB), so some HMIs can

be hosted on that. This is a nice feature. However, the limited size has been an
issue on a few innovation vehicles.
It is also not possible to have HMIs talk to each other for mirroring views,

for example. This currently has to be done by a separate proxy, requiring extra
software and resulting in a less robust HMI.

23

https://www.peak-system.com/PCAN-LIN.213.0.html?&L=1

3.3 Conclusion

To conclude, the current HMI system uses tablets with web-based HMIs for the
ease-of-use, innovative look and ease of developability. The CAN gateway in
use is the ESD EtherCAN/2. This device is able to send CAN messages over a
WebSocket connection to the webpage.
The benefits of this system are the following:

• Configuration pushed from the webpage

• Message aggregation to pack multiple bus binary messages in a single
WebSocket message

• WebSocket connectivity for the website to connect directly

• Webserver to host the HMI

• Decoding of messages on the HMI

The features that the current system lacks and that should be implemented in
a future system to improve usability and reduce network load are the following:

• Message packing to remove empty data bytes

• Multiple CAN buses per device

• Other buses besides CAN

• Bundling of data from other EtherCAN/2s into single WebSocket connec-
tion.

• Precise enough filters

• Rate-limiting possible

• inter-HMI connectivity

24

Chapter 4

Architecture

As this project consists of multiple software and hardware components, even
in different configurations, good consideration had to be made on where to
place the components, which components are needed and how the communic-
ation should be done. In this chapter, the software components are described
in Section 4.1, and then the hardware parts and possible uses are explained
in Section 4.2. After that, a software component mapping onto the possible
hardware is made in Section 4.4, and, finally, a final architecture is shown in
Section 4.5. This architecture is then used for the MVP in the next chapter.

4.1 Software components

Without software components, the hardware is useless, and the system will not
do what it is supposed to do. With too much software, the system could end up
over-engineered and offer more options and functionality than needed. Therefore
only software features are added that are currently used in innovation vehicles
or would have been used if they were possible.

One of those components that could be interesting but are and were not
needed is a ROS connection. It is nice to have the possibility to connect to
ROS nodes, but it is not used (much) in vehicles, so the possible use-case is low
for the added complexity and continuous support needed. The safety truck had
one ROS system in use for an experimental object detection system, but a node
with CAN was added to talk to the HMI and the rest of the ECUs. This made
it seem like a normal ECU and removed the need for the HMI developers to
know about ROS.

The software is split up into two programmable parts. The first part is the
HMI running in a browser and can be programmed in JavaScript (JS). There are
some safety and connectivity limitations, so another part is needed. This is the
Software Gateway. This is a single executable with a WebSocket interface on
one end and on the other end has hardware drivers for connecting to the different
hardware interfaces. It is envisioned to make it possible to run this gateway on
any hardware with an operating system, like Windows computers, Linux devices
and systems capable of running Docker. This should make it possible to connect
with any hardware interface, even when they have an operating system-specific
driver or specific hardware requirements.

25

The main software components are listed below:

• hardware interface drivers needed to connect to the different hardware
interfaces

• WebSocket interface, required to give the webpage an interface to connect
to

• communication and configuration needed to make the system a flexible
multi-purpose system for multiple types of buses and hardware compon-
ents

• Downsampling: filter and rate limit, needed to have a lower network and
CPU usage on the tablets by removing (duplicate) messages

Another component is decoding, which is needed to get the real data from
the binary information by using a DBC file. This should always be done on the
HMI to keep the transferred data simple and small. The current system also
decodes the messages on the HMI and uses this for message timeout detection.
As decoding is out of the scope of this system, this part will not be discussed.

4.1.1 Hardware drivers

This system’s most crucial part is sending and receiving messages from hard-
ware interfaces with a CAN (FD) controller. As there are multiple types of
hardware, as shown in Section 4.2, there are also various ways to interface with
them. Some devices have a TCP/UDP protocol over Ethernet, some are con-
nected via USB, and some hardware interfaces can run the Software Gateway
and use some internal protocol. Combining all of these protocols into a single
implementation is not possible. However, it is possible to generalise them into
a common (abstract) interface that each driver can implement. This allows for
the addition of a new driver later for new hardware interfaces. Functions like
start, stop, set config and send a message should be implemented by each driver.
Otherwise, they do not work. Virtual classes/functions can easily be made in
JS and C++. These are the selected languages for the MVP. JS is required as
the HMI webpage can only run JS, and C++ was chosen as some hardware in-
terfaces only have a C or C++ driver, and C++ is then preferred as it supports
objects and classes (object-oriented programming).
Both the HMI and the Software Gateway need an implementation using ab-

stract classes for drivers to adhere to a common abstract interface as shown in
Figure 4.1. The HMI as it needs to be able to connect to the Software Gateway
and hardware interfaces using WebSockify and to check the configuration of all
the possible driver types before uploading. The Software Gateway needs it as
it connects to different hardware drivers.

4.1.2 WebSocket Interfaces

WebSockets are the main communication method for HMI as this is the fastest
full-duplex communication that a webpage can use. This, however, requires the
other side to have a WebSocket server. The ESD EtherCAN/2 used previously
has this feature, but a lot of networked devices do not have this additional
interface. Devices that do not have a network interface like Ethernet or Wi-Fi

26

Figure 4.1: Classes for hardware interface drivers must adhere to a
common abstract interface

Figure 4.2: Using WebSockify to connect an HMI to a hardware in-
terface by converting the hardware protocol messages in WebSocket
messages to TCP/UDP messages

cannot be controlled from the HMI, and thus innovation vehicles with those
components need a Software Gateway.

WebSockify

It is not required to use the Software Gateway and added features/complexity
if there would be a simple WebSocket to socket converter. Fortunately, there
is such a system called WebSockify. This open-source application translates
WebSocket messages to socket messages. This is shown in Figure 4.2. The
HMI connects to the WebSockify WebSocket server (yellow line) and instructs
it to forward all packets to a specific IP and port pair (blue line). Then the
hardware interface protocol, which generally does not work from the browser, is
run in the browser, making it seem like it is connected directly to the hardware
interface (purple line). Each HMI can connect to the WebSockify WebSocket
interface and instruct it to connect to a TCP port of any hardware interface.
Then the data sent to WebSockify is forwarded to the hardware interface, its
Socket interface. WebSockify can be run on the router or any computer in the
network.
This makes it easier for the JS developers to add support for a new hardware

interface, as they only would have to edit the JS code and no deployed and
compiled software needs to be changed. It, however, could result in a higher
network load, as each connected HMI needs a WebSocket and a TCP connection

27

on the network. Using the Software Gateway instead would result in a single
TCP connection and a WebSocket connection for each HMI.
For simple systems without inter-HMI communication and only networked

hardware interfaces, using WebSockify as the WebSocket interface could be the
best option.

Websocket interface Software Gateway

The Software Gateway needs a WebSocket server for the HMIs to connect
to. There are multiple C++ libraries that provide such functionality, like
WebSocket++ and Boost.Beast. It is possible to broadcast data using these
libraries to all the connected clients simultaneously and thus treat them as a
single connection.

4.1.3 HMI Communication

There are two different streams for the HMI communication with the Software
Gateway. One is the fast ’cyclic’ data from the buses that the Software Gateway
is connected to. Besides the message data, there is the configuration stream.
This stream of data is often longer and has less priority.
As WebSockets support two payload types, binary and text, each stream can

be used on its own type. This makes it easier to parse on the HMI and Software
Gateway sides and minimises the network overhead for the bus messages while
keeping the possibilities for the configuration data.

Bus Messages

The bus messages are the messages in a WebSocket message for each received
CAN (FD) message. As these buses run at a high baud rate (≥ 500kbps), a
lot of messages can be received per second. The system must be fast enough
to process and transfer these messages to the HMI. The HMI can also send
messages, however, often at a lower rate.
Sending these messages as binary without processing, like decoding or con-

verting them to JavaScript Object Notation (JSON) text, is the most efficient
and the fastest on both ends. As each message can have a different length,
ranging from a maximum of 8 bytes (CAN) to 64 for CAN FD to 254 bytes
for FlexRay, making each message fit the maximum results in a lot of unused
network traffic. Therefore minimising should be used to shrink the message to
only the needed size.
In addition, message aggregation should also be used to put multiple bus mes-

sages into a single WebSocket message. This reduces the overhead of the Web-
Socket messages compared to the payload and results in fewer system calls and
interruptions on the HMI. This all makes the system more efficient. The down-
side of message aggregation is that the messages do not arrive simultaneously at
the Software Gateway. Therefore, bus messages must be buffered before sending
the entire buffer to the HMI. This buffering adds an extra latency depending
on the busload, where a higher busload results in lower latency. A timeout has
to be added to transfer the non-full buffer after some time to remove very long
latencies. Appendix D proposes a message definition and shows an example of
buffering and a timeout.

28

https://github.com/zaphoyd/websocketpp
https://github.com/boostorg/beast

Figure 4.3: Bus ID message tagging

As the Software Gateway can connect to multiple hardware interfaces simul-
taneously, interaction with multiple buses is possible, and bus messages can be
tagged by their origin/target bus. This tagging makes it possible to stream all
the messages from all buses over a single WebSocket connection instead of cre-
ating multiple WebSocket connections. The message aggregation can result in
more efficient messaging (buffers are fuller before a timeout) and lower latencies
(buffers are full faster). This mechanism is shown in Figure 4.3.

Configuration

Configuration is done less frequently and often before needing the faster bus
messages. Therefore this can be done less efficiently and more expressively, like
sending a JSON text configuration. This allows for sending other low-priority
messages, like status messages.

4.1.4 Message Downsampling

Some messages are sent very often, and some messages are less interesting for the
HMI. These messages should be downsampled by rate limiting or even filtered
out. A more aggressive downsampling configuration will result in fewer unused
messages being sent from the Software Gateway, resulting in less network traffic
and a lower load on the HMI device.

Filtering

Filtering is taking out the messages that are not needed based on message ID.
There are multiple types of filtering possible.
The most basic version is a range filter as used on the ESD EtherCAN/2.

This filter has a start and end ID, and every message in that range is accepted.
When using a single filter, it is not that useful for an HMI, as the message IDs
are often not sequential and span huge ranges, resulting in a lot of accepted
messages that should not be.
A more specific filter is a bitmask filter. This is often used in embedded

systems, like ESP32 and SocketCAN, as this is cheaper to check than any other
filter. It uses a mask and a filter ID. The mask indicates the important bits that
must be equal to the bits in the filter ID & mask. This filter works well when
the IDs are close together and only differ in a few bits, but for an HMI with
large distinct sets of messages, a single bitmask filter will not result in many
filtered-out messages. The most specific filter is a list of IDs in which the HMI is
interested. This filter will never pass any unwanted messages but is more CPU-

29

and memory-expensive as each time a message has arrived, the list of IDs has
to be looked through to check for a match. This checking could be optimised
by sorting and a search algorithm, but it is still more expensive.
For non-extended message IDs, it can be optimised by using a boolean ar-

ray with a boolean for each possible ID. This optimisation is possible as non-
extended IDs are 11 bits, resulting in 2048 possibilities. This range of possibil-
ities would be an acceptable array of 256 bytes, where extended IDs are 29 bits,
resulting in an array of at least 67MB. This considerable array would not be a
great filter as this uses too much memory.
A mix of filter types should be used for fast and optimal filtering. This way,

some bitmask filters could cover almost identical IDs, some range filters for small
ranges and a small list of IDs for the outliers. This mix of filters would be faster
than a single list of IDs and would filter out more than a range or bitmask filter.
The HMI developer must decide what filters to use.

Rate limit

Some ECUs send messages at a higher rate than the HMI can ever show. Trans-
ferring these superfluous messages creates unwanted network load and should
be limited to a more sane interval. For this, a rate limit system should be used
that only forwards the same message ID a few times per second.
Rate limiting requires more processing power and memory than filtering,

which requires keeping track of messages or the last forwarding time. There-
fore, filtering the messages before the rate-limiting step is more efficient. Some
algorithms for rate limiting are described in Appendix C.
Rate limiting can decide to discard or forward messages based on the arrival

time and does not need not look at the data and whether it is essential or
changed. This ignorance is often not a problem, as messages are sent cyclically
with a higher frequency than the data changes. Rate limiting based on data
requires more memory and processing than deciding on timing, as the data has
to be compared, copied and stored, compared to a shorter time variable.

Conclusion Downsampling

There are multiple methods to reduce the number of messages forwarded from
the buses to the HMIs. Two are filtering by message ID and rate limiting based
on time. Filtering can be done by using bitmasks, ranges, lists of IDs or a mix
of all of them. The first method (bitmasks) is the fastest but will pass more
unwanted messages as the list of wanted messages increases. The last filter (list)
is more computationally expensive but will not forward the messages it should
not. As mentioned earlier, a combination of the filters will probably be the
best option depending on the messages the HMI needs. Rate limiting is more
expensive than filtering, and thus rate limiting should be done after filtering.

Cyclic broadcasting

Another system that could be beneficial for the HMI system is cyclic broadcast-
ing. This system can reduce the load on HMIs by sending cyclic messages to a
specific bus from the Software Gateway instead of letting the HMI do that work.
One example of a system that needs cyclic messages is motorised seatbelts. The

30

retractors need a control message every few milliseconds. Otherwise, they stop
retracting for safety purposes. The Software Gateway could take this cyclic
sending task from the HMI, resulting in a lower CPU load and a lower network
load. There also needs to be a timeout functionality. Otherwise, a button on
an HMI might be pressed to let the seatbelts retract, and then the HMI might
be disconnected. Some people could end up in continuous tight webbing when
there is no timeout check. The timeout would require the HMI to send the
message every second to let the Software Gateway know it still wants to send
that message cyclically. A message a second is less network and CPU heavy for
the HMI than every few milliseconds.

The HMI is also not always able to adhere to strict timing, as the tablet,
browser and networking are not real-time. Giving this task to the Software
Gateway, with better timing and probably more free processing power, will
make the HMIs less loaded and can result in better timing.

SocketCAN has the Broadcast Manager (BCM), capable of sending a message
cyclically to CAN (FD) buses. A custom implementation is required when not
using SocketCAN. An algorithm was thought of that can send multiple messages
at different intervals. This algorithm is shown and explained in Appendix B.

Conclusion Software components

An HMI system that can connect to multiple hardware interfaces requires some
software components. The main components for this project are hardware in-
terface drivers, WebSocket interfaces, communication, and downsampling. Mul-
tiple drivers are needed to communicate with the different hardware interfaces
that exist. There are multiple kinds of communication, like the Socket interfaces,
proprietary drivers and SocketCAN. These all work differently, and a common
interface should be made that each hardware driver adheres to with some glue
code. This makes it flexible to change hardware and build HMI systems for
different innovation vehicles.

Communication with a gateway between the hardware interface and the web-
page must be done with WebSocket connections, as this is the only fast commu-
nication protocol possible. The protocol in these WebSocket channels must be
optimised and scale dynamically with the size of the bus data, and multiple bus
messages must be packed into a single WebSocket message. This will reduce the
network overhead and will interfere less with other networked systems.

Downsampling is essential to reduce the processing and network load by re-
moving unwanted bus messages as soon as possible. The first stage is filtering
by message ID, which can be done with bitmask filters, range filters and plain
lists of IDs. After these simple and fast filters, rate limiting can remove duplic-
ate messages in the same short interval. As messages on automotive buses are
often cyclic and the same data is sent repeatedly, this does not lead to data loss.
Also, the HMI will not be able to display each message at high rates.

Cyclic broadcasting can take some load from the HMIs by cyclically sending
data from the Software Gateway instead of letting the HMI do that work. A
timeout system is needed to prevent accidents when an HMI is disconnected.

These features will make it a more flexible and efficient networking and pro-
cessing system.

31

Figure 4.4: Network layout with default components

4.2 Hardware components

The innovation vehicles need some hardware to run the HMI system. The
most obvious component is the tablet running the webpage inside the vehicle.
Another essential part is the router that the HMI connects to and then the
hardware interfacing the automotive buses. The basic components and network
layout is shown in Figure 4.4.

The basic components are listed in Subsection 4.2.1, and options for running
software are listed. In Subsection 4.2.2, some hardware interface types are
discussed as to how the drivers of those types usually work.

4.2.1 Basic components

The basic components that can be used for any processing are these:

• HMI on tablet

• router

• optionally a computer/single board computer

The HMI runs on a tablet, (almost) always an Android tablet, capable of
running apps. It is impossible to run Docker containers on Android (or iOS)
without root. Rooting the tablets should be avoided, as this is not easy and
makes the tablet not stock anymore, resulting in difficulties when swapping
them for a fresh one when there are issues. Running anything besides the
HMI on a tablet, like a Software Gateway, would not be a great solution. The
operating system can throttle or close applications, and the tablets are always

32

connected by Wi-Fi, resulting in longer latencies and lower bandwidth than a
system connected with Ethernet.

The router is used to connect from the outside to the vehicle, connect to
other devices in the network, like camera systems, and connect the tablet to
the network and hardware interfaces. The router used most often is a MicroTik
HapAC2. This router can be set up to have a Wi-Fi network while connecting to
an outside network through Wi-Fi, LTE or Ethernet. The router also supports
Docker containers that can run any capable application.

Sometimes a computer or a single-board computer (SBC), like an Nvidia
Jetson Nano or Raspberry Pi, is added for extra features, like running object
detection, GPS location logging or running an extra HMI. These always run
Windows or Linux, like Debian or Ubuntu, and can be used for the Software
Gateway. As the operating system and CPU architecture are not always the
same, a flexible system must be used to have a single code base that works on
all these targets. Windows only runs on x86 processors, while Linux can run on
a lot more architectures, like ARMv7/8 and RISC-V. Using a general-purpose
language like C++ together with a build-system like CMake makes it easier to
develop for multiple target systems. CMake is able to select the correct compiler
for each build, like MSVC for Windows builds, GCC or Clang for Linux and a
cross-compiler for very specific targets, like the ZF ProConnect.

4.2.2 Hardware interfaces

As there are multiple buses and manufacturers, there are multiple hardware
interfaces interesting for the HMI system. Some only support CAN, whereas
others have multiple buses in a single box. For the architecture, the specifics
are not that important, but it is important to note that there are a few different
kinds that impact the architecture and possibilities of the final system. The main
three types are networked, use SocketCAN or use some proprietary driver. These
three kinds and their impact on the HMI system are explained in the following
subsections.

Networked

A lot of hardware interfaces have an Ethernet connection and can be reached
from anywhere in the network, but there is no standard protocol for these
devices. For example, the Vector VN8914 gateway uses the Vector FDX pro-
tocol, a binary protocol that works with requests for data, while the Ixxat NT
gateways use an ASCII protocol that will just send all the messages. These
protocols are often public and sometimes also have a C/C++ implementation.
With this, the HMI can connect to them through the Software Gateway or con-
nect to them directly with the WebSockify gateway running on the router, for
example. That last route is shown in Figure 4.5a, where a WebSockify lets an
HMI connect to the hardware interface directly. The other method is shown in
Figure 4.5b, where a single Software Gateway connects to the hardware interface
and the HMI connects to the Software Gateway.

Some devices have a limit on the number of concurrent connections possible.
This can be avoided by using the Software Gateway or improve WebSockify by
combining multiple WebSocket connections into a single TCP/UDP connection.

33

(a) Networked hardware interface with WebSockify (b) Networked hardware interface with a Software Gateway

Figure 4.5: Different methods to connect networked interfaces to an
HMI

These hardware interfaces do not significantly impact the architecture, only
that there is a gateway between the HMI and the hardware interface.

SocketCAN

Linux has CAN (FD) support in the kernel. This is called SocketCAN and
works like a normal socket interface used for normal networking, but instead
of Ethernet packets, CAN packets are sent. The kernel then invokes the driver
specific to the hardware it is running on, and the message is sent. Receiving
works the same as reading normal network traffic. SocketCAN also has a system
called Broadcast Manager (BCM). This manager can cyclically send messages
at specified intervals indefinitely or a few times. This relieves an application
wanting to send cyclic messages by offloading this task and results in a lower
CPU usage and stricter timing. This broadcasting is an important feature
currently performed by the HMIs, taking CPU and network resources while
not being strict on timing.
Some hardware vendors sell hardware with CAN (FD) with support for SocketCAN.

Using this hardware makes it easier for users to switch hardware without chan-
ging any code. The downside of this flexibility is that it only works on Linux
with SocketCAN-capable hardware and cannot directly be interfaced from the
HMI.
One of those devices is the ZF ProConnect, an automotive computer with

CAN and CAN FD interfaces. It runs a Linux distribution and has the required
SocketCAN drivers. The Software Gateway could be compiled for this target
with a SocketCAN hardware interface driver, and then the HMI could work with
this. An architecture with a ZF ProConnect with a Software Gateway running
is shown in Figure 4.6.

Proprietary drivers

The last main type of hardware interface uses proprietary drivers only supported
on Windows. These include the Vector XL driver for the Vector VN7640 and
the Vector CanCases. These drivers are often implemented in C or C++ and

34

Figure 4.6: SocketCAN interface with a Software Gateway

are distributed as a shared library (DLL) and a header file. As these drivers use
operating system-specific system calls, it is not possible to run these drivers on
Linux without using virtual machines. Some other vendors supply binary drivers
for Windows and Linux, but only for x86, so these drivers are incompatible with
other CPU architectures.
These hardware interfaces with proprietary drivers impose a significant re-

striction on the possible systems. They require a specific operating system and
architecture and are only usable with the Software Gateway and not WebSock-
ify. One example of a proprietary driver is shown in Figure 4.7, where a Vector
VN7640 is interfaced from a Software Gateway using the Vector XL driver that
only works on Windows.

Conclusion hardware interfaces

There are multiple types of hardware interfaces that each have their own pro-
tocol and driver. Some devices have an Ethernet connection with a public driver
and can be connected from any intermediate gateway, like WebSockify and the
Software Gateway. Other devices can run code and be used with SocketCAN
and, therefore, can be used from the Software Gateway. The most restrict-
ive devices have a proprietary driver that can only run on a specific operating
system or architecture and forces the innovation vehicle to have specific extra
hardware.

4.3 Distributed systems

In the current system, it is only possible to connect to a single bus per WebSocket
connection. HMIs cannot connect to other HMIs or to other vehicles without

35

Figure 4.7: Architecture for the Vector VN7640 interface with a pro-
prietary driver for Windows

using a Virtual Private Network (VPN) to that vehicle. Setting up a VPN
connection on each tablet and computer that needs to connect to the vehicles is
not recommended, as it needs setting up and also gives access to all the other
components connected to the vehicle networks.

Adding components to the system, like special drivers, could solve these prob-
lems and improve usability.

Remote development and viewing

One of those cases where it is impossible to connect to the vehicle network is
remote viewing or remote development. In these cases, the HMI is on another
network with no possible route to the vehicle network.

A particular driver in the Software Gateway that connects to a remote Soft-
ware Gateway could solve these issues. An added router, local to the user, could
host the Software Gateway and connect through a VPN to the vehicle router,
running another Software Gateway. Figure 4.8 shows this solution.

Mixed systems

It should also be possible that more than one hardware interface is connected to
the vehicle. Multiple interfaces could lead to multiple Software Gateways in a
vehicle, for example, when a VN7640 and a ZF ProConnect are connected. The
VN7640 requires a Windows computer and the ProConnect is also a standalone
computer. Then the network should have the data of one gateway be routed
through the other Software Gateway, as this leads to less WebSocket connections
for the HMIs, fewer WebSocket connections for the child Software Gateway and
could lead to better filled WebSocket messages as there is more data to fill the
buffer in time. The proposed Software Gateway driver that connects to another

36

Figure 4.8: Remote working using a local router connected to a vehicle
router

Software Gateway will solve this problem.
Multiple systems of these mixed systems are shown in Figure 4.9. The first

three systems (a-c) show a Software Gateway on a Windows host connected to a
Vector XL hardware interface (VN7640). The trucks also have a ZF ProConnect
with some buses. Both gateways’ data must be sent to the HMI.
Figure 4.9a shows the basic default option, where the HMI connects to both

Software Gateways and has two WebSocket connections. Figure 4.9b shows
another possibility. Here the second Software Gateway, on the ZF ProConnect,
connects to the Software Gateway of the Windows computer. The data of the
VN7640 is then routed through the Windows gateway to the ProConnect and
then broadcasted to all the connected HMIs. Sending a message to the bus of
the VN7640 is the same as sending a message to the ProConnect, albeit with a
different bus number. The Software Gateway on the ProConnect will forward
it to the second gateway. The gateway on the Windows computer just has one
WebSocket client, interacting like an HMI. Routing the data through another
Software Gateway, will result in fewer WebSocket connections for the HMI and
the child Software Gateway.
Routing data through multiple Software Gateways can be done as well, as

shown in Figure 4.9c, where a router, local to the HMI, connects through a
VPN to a gateway in the vehicle. That gateway is also connected to another
gateway. This keeps the number of connections for the Software Gateways low.

Multi-vehicle systems

Besides remote viewing, another scenario with VPNs is multi-vehicle systems.
One example is showing the locations of the vehicles on a map. The ZF

37

(a) Default setup with a connection per gateway
(b) Routing data from child gateway through parent
gateway

(c) Remote HMI with data routed through a local
Software Gateway on a router to the vehicle

(d) Fleet data combining at the router results in a
single WebSocket connection per HMI

Figure 4.9: Different multi-type architecture

ProConnect has GPS on-board, so it is possible to develop an application that
sends messages with the current location. Connected HMIs could then show
that on a map.

This works well with one vehicle, but with remote HMIs and multiple vehicles,
this will give problems with the VPNs, as the routers in the vehicles all have
a separate VPN. Often a computer or tablet can only connect to a single VPN
and not multiple.

One way to solve this issue is by putting a Software Gateway on a central
router, as they can connect to multiple VPNs. This central Software Gateway
then connect to the separate Software Gateways in the vehicles, as shown in
Figure 4.9d, and forward the location messages to the HMI.

inter-HMI Communication

Sometimes it is required to have inter-HMI communication, for example, when
controlling a vehicle system that only accepts non-conflicting data or when pages
should be mirrored from one HMI to another.

One example of such a vehicle system is the regenerative braking system in
the Efficiency trailer. This trailer has a battery and an electric motor, and
with a slider on the HMI, passengers could feel the impact while driving. This
system did not allow conflicting data, like one HMI sending a torque value and

38

Figure 4.10: inter-HMI Communication architecture

the other HMIs sending 0 as a torque. As this HMI system used the current
system, no inter-HMI communication was possible, and the developers opted
for only allowing a single (predefined) HMI to send data. The other HMIs were
not sending data.

The new HMI system could implement a special driver that echoes all the
messages sent to it back to all the HMIs. The HMI can communicate with each
other with this driver. A protocol could be made where an HMI could instruct
other HMIs to disable that feature temporarily and enable it again when the
’main’ HMI is done controlling that system.

An example of mirroring can also be taken from the Efficiency truck, where
there was an HMI on a tablet on the dashboard for the passenger, but also a
monitor mounted at the top for the customer in the middle seat to have a look.
The monitor could not be connected to the tablet, as the tablet was connected
wirelessly. A special gateway received page messages from the tablet HMI and
forwarded this command to the viewing HMIs to instruct it to show a specific
page. This system added complexity and possible failures.

This could also be solved by having an echo driver. An example system is
shown in Figure 4.10. This echo driver ’receives’ any sent message, and the rest
of the Software Gateway broadcasts it to all the connected HMIs. This makes
adding a mirroring system easy and more stable, as it only requires sending or
receiving a message to a ’bus’ on an often already-running Software Gateway.

4.4 Mapping software to hardware

There are multiple methods to map the software components to the hardware
components, some better than others. Decoding the messages before hardware

39

Figure 4.11: Software gateway mapping

interface drivers would be an illogical mapping. The criteria for the final map-
pings were stability, speed/efficiency, hardware interface usability, and reusabil-
ity. An unstable system is of no use and would not be used. A decent speed and
efficiency are also critical to not impact the HMIs too much and to not interfere
with other networked systems. If no hardware interfaces can be used or it is
only usable for a single system, then it is too limiting, like the current system.
These requirements resulted in the following two mappings, one with a Soft-

ware Gateway and the other with a simple WebSockify gateway. These two
mappings are compatible with each other, making it a very flexible architec-
ture.

4.4.1 Software Gateway

The main mapping is by building a Software Gateway. This mapping is shown
in Figure 4.11. This gateway would be an application that connects on one
side to one or more of the hardware interfaces in the vehicle and on the other
side HMIs connect to it. This gateway would have multiple drivers for the
networked interfaces, internal interfaces, like SocketCAN, and the proprietary
drivers included and thus can connect to all the possible hardware interfaces.
To make it work for all the hardware interfaces, it would have to work on Linux,
for SocketCAN, and on Windows, for some proprietary drivers, like the Vector
XL driver.
The downsampling and cyclic broadcasting components are not shown in the

architecture, but the common interface will have those features to be used by
all the drivers.
The HMI would then connect to the Software Gateway through a WebSocket

connection. To make configurations easier and centralised, the HMI would up-
load the configuration it wants with the used buses. The gateway would then
connect to all the required buses and broadcast all the data to all the connected
HMIs. The data can be broadcasted to all the HMIs, as they all have the same
webpage running and all need the same information. This makes it simpler to
build a Software Gateway, as it only needs to connect all HMIs to one set of

40

Figure 4.12: Websocket gateway mapping

buses and not keep track of what data of which buses are required by which
WebSocket connection.

The HMI would need one driver for the gateway. Besides this driver, only a
message parser is needed on the HMI. This makes it possible to only send the
binary data over the WebSocket connections and not the bigger parsed data,
resulting in lower network traffic and less computing needed on the Software
Gateway.

Using a single connection to the hardware interfaces with the Software Gate-
way lowers the network load and processing load on the interfaces. The devices
will also not receive duplicate or conflicting instructions from multiple connec-
tions, like when the HMIs would connect to it directly.

A custom application for streaming the data from the hardware interfaces to
the HMIs also creates the possibility to add extra features like filtering and rate
limiting to only forward the messages that the HMIs need for the visualisations.

When there are only networked interfaces, then the Software Gateway could
even run inside a container, making it possible to run on a router or be easily
deployed on any computer available in the vehicle.

It could be possible to build a Software Gateway for the tablets the HMIs
are running on, but this is not recommended, as Android and iOS throttle apps
that are running in the background, resulting in lower performance. The tablets
can only connect to the networked hardware interfaces and are connected via
Wi-Fi, limiting bandwidth and increasing latency.

4.4.2 WebSockify

Another mapping is by putting the hardware interface drivers on the HMI and
having a WebSocket to Socket gateway between the HMIs and the networked
hardware interfaces. This gateway can be created with WebSockify and can run
on any computer and router in the network. This mapping would put the HMI
in direct control of the hardware without a custom application in the middle,
like in the mapping shown in Subsection 4.4.1.

Figure 4.12 shows the system of this mapping. The message handling, like
decoding, is still done on the HMI, as there is no other part in the system capable
of decoding. This mapping with multiple HMIs will result in multiple WebSocket
connections, each having a Socket connection, resulting in multiple connections
to each hardware interface. Multiple connections might result in conflicting

41

Figure 4.13: Final global architecture

instructions for the hardware. The current system has the same setup, where
multiple HMIs send settings to a single device, which works without big issues.
For simple HMI systems with a small set of connected clients and not too

much bus traffic, removing the need for filtering, this system would be great.
WebSockify can run in a container and thus also on a router, removing any

requirement on extra components in the vehicles. This system is more flexible in
selecting which HMI connect to which gateways, as it can connect to a hardware
interface or not. This flexibility makes it possible to have one HMI connect to
a gateway and another HMI not connect to it.

4.5 Final architecture

The proposed mappings from Section 4.4 are merged into a single final map-
ping. This final architecture is shown in Figure 4.13. Then the HMI JS code
can connect, based on the configuration, to the simple WebSockify gateway and
have the hardware driver on the HMI. It can also connect to a Software Gate-
way when there are buses that cannot be reached with WebSockify, when the
downsampling systems are wanted, or when there are other features required
from the Software Gateway.
There are also hardware interfaces with included WebSocket servers, like the

ESD EtherCAN/2. These can be reached directly from the HMI, resulting in
three methods for the HMI to communicate with hardware interfaces.
For the HMI, this would require it to have a similar system as the Software

Gateway, where a common interface must be defined, and all the gateway drivers

42

must adhere to it. JS can have interfaces and inheritance, and such a common
interface can make adding a new hardware interface easier. Using these common
interfaces makes it easy to change the hardware setup without changing any
code, only the configuration.
The communication to and from the hardware interfaces will always be using

their protocol when using direct drivers and using WebSockify. The commu-
nication to the Software Gateway can be any protocol but should be optimised
for the bus messages to optimise performance and keep the network load as low
as possible. The proposed protocol has binary WebSocket messages, with flex-
ible data length for the messages and puts multiple bus messages into a single
WebSocket message. This way, the overhead of a single WebSocket message is
spread over multiple bus messages. For configuration and status updates, the
text channel of the WebSocket connection can be used with JSON messages.
These JSON messages require more bandwidth than possibly needed, but they
are more flexible and easier to generate and parse.

43

44

Chapter 5

Minimum Viable Product

To check that the proposed architecture from Chapter 4 works and to build a
usable system for ZF, an MVP was built. This MVP is targeted to replace the
current system, and thus a complete system must be made, including Software
Gateway, WebSockify, and HMI code.

Firstly, the architecture (Section 5.1) of the MVP is shown and explained.
Following that section, the used software tools and languages (Section 5.2) and
software components (Section 5.3) are described. They contain information
on the software used to build the system and some specific components. The
gateway types are highlighted after that in Section 5.4. In Section 5.5, tests are
shown to check that the MVP meets the requirements. Finally, Section 5.6 ends
this chapter with conclusions and shows which requirements (Section 1.1) are
met by the MVP.

The implemented hardware interfaces are listed in Appendix A with their
drivers and how they could be used with the HMI system.

5.1 Architecture

The architecture of the MVP is the architecture as proposed in Chapter 4 but
made specifically for the hardware available and requirements of the MVP.
Figure 5.1 shows the global architecture. The hardware interfaces can only
interact with the Software Gateway or WebSockify, except for the EtherCAN/2.
This interface can also be used directly without any gateway.

The Software Gateway architecture, as shown in Figure 5.2a, has multiple
drivers, conforming to a common interface. This interface makes it possible to
easily add a new feature or add a new driver. Each bus has a driver and possibly
a filtering and rate-limiting system, depicted with the downsampling systems
box. Also, a broadcasting system for cyclically sending a message can be used
with a bus. The messages from all the buses are packed into a single queue for
the WebSocket system that broadcasts the data to all the connected HMIs.

The HMI architecture looks almost the same, as shown in Figure 5.2b, except
that it does not have the downsampling and broadcasting systems. The yellow
parts are components that the HMI developer should implement, as these are
specific for each vehicle. The features that are not present in the HMI architec-
ture compared to the Software Gateway architecture are not deemed useful and

45

Figure 5.1: Global architecture of the HMI system

necessary. Filtering can be done by the decoding system and would not take
much processing power away when it is implemented. Rate limiting on the HMI
will not reduce the load on the HMI hardware. The HMI would have already
received the messages by then and thus not reduce CPU or network load. Cyclic
broadcasting to a vehicle bus from the HMI should be done by the front-end
code, as the developer wants to implement it there instead of adhering to the
different requirements of the HMI system. The other option for cyclic broad-
casting would be to use a Software Gateway. Decoding the messages depends
on the DBC, and some HMI projects need extra decoding features, like putting
multiple 8-byte messages together into a single larger message.

5.2 Software tools

For the MVP, two systems, the HMI code and the Software Gateway, that co-
operate had to be made. The JS code on the HMI has to work with WebSockify
and the Software Gateway to receive and send messages from all the buses. The
JS software also has to include the hardware drivers for the interfaces that are
reachable through WebSockify. The Software Gateway has to run on multiple
hardware targets and operating systems selected for the MVP, connect to the
networked hardware interfaces, and include the possible proprietary drivers on
some platforms. The selected hardware for the Software Gateway is Windows
and Linux x86 computers, Docker x86, ARMv7, and ARMv8 containers, the ZF
ProConnect (Linux ARMv8) and Nvidia Jetson Nano (ARMv8). These parts
were available and interesting to use, and some are already running in innovation
vehicles.

For the HMI JS library, plain JS was required as the programming language,
as this is the only language possible for websites. No frameworks or libraries

46

(a) Architecture of the Software Gateway (b) HMI JS architecture

Figure 5.2: Different parts of the architecture for the HMI system

were added to the HMI code to make it not constrained to that single framework
and to keep it lightweight. No libraries makes it also easier to include the JS
code into an HMI project. The separate parts of the HMI code are organised
in separate ECMAScript (ES) modules, as this is the official way to package JS
components. These ES modules and thus also the HMI gateway code, can run
in Node.js, making it possible to build an application running outside a browser
to interface with the HMI system. For the tests of the MVP, these modules
were also used with Node.js. Running the tests outside a browser eliminates
problems browsers might give by throttling webpages when they are not in the
foreground, for example.

CanViewer2, a special HMI to see current bus data for debugging and a proof
of concept of this project, uses Vue.js as the framework for visualisation, as this
is an easy framework for building web apps. It is a reactive framework, where
a variable change is immediately updated in the graphical user interface (GUI),
and it uses templates, which is great when having duplicate parts, like showing
a list of bus messages. Another great thing about Vue is the build functionality.
This build functionality takes all the JS files and minifies and removes all dead
code (tree-shaking), resulting in a small webpage consisting of only a few files. It
was decided that CanViewer2 could be implemented with a framework, as this
is a standalone webpage and will not be included in an HMI for the customers
to see.
For the Software Gateway, a programming language with support for multiple

architectures and operating systems had to be chosen. As there were also some
drivers provided in C and C++ and these languages also compile to machine
code and are not interpreted, like JS, C++ was chosen. This is a programming
language with support for object-oriented programming with special resource
management features. This makes working with resources like memory, sockets
and objects easier than doing that in C. C++ does not have WebSocket compon-
ents, like JS has, natively, but those features can be imported by using libraries.
The Software Gateway is allowed to have libraries. Otherwise, it would require
more development time. The Software Gateway is not imported into any other
system, like the JS code. It is possible to use those libraries by just adding

47

https://nodejs.org/en/
https://vuejs.org/

the files to the source code and including them, but some libraries that were
used, like Boost, are not straight-forward to compile and need extra setup. To
make it easier to compile for the multiple targets and build pre-compiled pack-
ages, Conan was selected as the package manager. Conan has a repository of
pre-compiled libraries, making it possible to add a package easily and have it
compiled without extra effort.
The used packages were Boost, for argument parsing, thread pools and filesys-

tem operations, WebSocket++ for WebSocket server and client features. Fi-
nally, Niels Lohmann’s JSON library was included for JSON parsing and seri-
alisation.
CMake was chosen as the build-system for C++ to make it easier to select

the correct compiler. It needs one configuration file for all the different targets
and combines all the drivers and Conan packages into a single executable or
Windows installer.

5.3 Software components

The architecture of Figure 5.2 is used to develop the MVP. Some of these
components are highlighted in this section. The bus messages on the WebSocket
connections are implemented as proposed in Figure D.1.

Broadcasting

Broadcasting was implemented as envisioned in Section 4.1.4. The configuration
that the HMI has can include a broadcast configuration to set default data, a
sending interval and, optionally, a timeout. The timeout should be used when
the message is for a system that should revert to a default state when an HMI
is disconnected.

Software Gateway driver

The Software Gateway driver in the Software Gateway works like any other
bus driver. This driver can connect to another Software Gateway and acts as
an HMI to receive and send messages. It was chosen to implement this as a
normal driver to keep a clean architecture and system. The driver opens a
WebSocket connection to the other Software Gateway like any HMI. It was
chosen to use WebSockets for this communication, even though it could be done
with the lower-level TCP. However, this would require the Software Gateway to
also have a TCP interface besides the WebSocket interface. Acting as a normal
HMI makes it simpler, and the WebSocket overhead is not much. It would also
be more firewall-friendly, as it looks like regular website traffic.

Downsampling

The MVP also includes downsampling with filters and rate limiting. The imple-
mented filters are lists of IDs and ranges. Rate limiting is done with the time
slice algorithm shown in Figure C.1b. It stores a list of messages that are sent
in the last time slice. When a message is received, this list is checked, and when
it is not yet forwarded, it is forwarded. Otherwise, it is discarded. At every
interval, this list is reset.

48

https://www.boost.org/
https://conan.io/
https://github.com/zaphoyd/websocketpp
https://github.com/nlohmann/json
https://cmake.org/

Figure 5.3: Software Gateway filtering illustration. A thicker line
means more data

Each bus has its own filter and rate-limiting system. This makes it possible
to have different rates and different filters. The rate is the same for all messages
from a bus as the algorithm is time slice triggered.

Even the Software Gateway can have filtering or rate limiting enabled. This
could be useful for systems with HMIs inside the vehicle and an HMI showing
the locations of the vehicles, as illustrated in Figure 5.3. Then a Software
Gateway (map gateway) could be placed between the map HMI, connecting to
the Software Gateways (vehicle gateways) inside the vehicles. The map HMI
would only need the location, so the map gateway could filter out the other
messages. This cannot be done on the vehicle gateways because the messages
for the HMIs inside the vehicles would also be filtered, as the filtering is done
before the broadcasting to all the connected HMIs.

5.4 Software gateway hardware

When using the new HMI system, the Software Gateway is the application that
everything connects to. Only in smaller HMI systems with specific hardware,
the Software Gateway is not required, and WebSockify could be used. In those
smaller systems the Software Gateway could still improve stability and reduce
network and CPU load by controlling the hardware interfaces from one single
spot. Therefore the Software Gateway needs to be able to run on as much
hardware as possible to reduce the costs and space of adding computers just for
this purpose to the vehicles.

The Software Gateway was developed in C++ without any dependencies on
the operating system besides the standard library. The only library that it
includes, when available, is the SocketCAN header. The other dependencies,
like Boost and the JSON libraries, do not have any extra requirements. This
makes it possible to compile easily for any Linux distribution and also makes it

49

possible to compile for Docker.

For Windows, there are three possibilities to get the Software Gateway up
and running. The first is running the Software Gateway in WSL. This is a
kind of virtual machine, but more integrated into Windows and was used for
development. Using WSL, it makes it possible to run Linux applications on
Windows with a smaller overhead than a real virtual machine. For network-
connected hardware interfaces, this will work as fine as running it in Docker, as
it does not require other Operating System (OS) or hardware capabilities. When
it is required to use SocketCAN devices connected through USB on Windows,
then a kernel supporting SocketCAN and USB-passthrough will make it possible.
The second option is using the Software Gateway compiled for Windows. This
will enable the Vector XL driver but disable the SocketCAN driver. To make
it easy to start on Windows, an installer installs the gateway, webserver and
CanViewer2. This way, it is not required to install a complete toolbox.

Docker is the third option for Windows (using WSL) and also an option for
Linux OSs and for the routers often used in the vehicles, the MicroTik HapAC2.
Using Docker, it is possible to compile for other architectures, like ARMv7 and
ARMv8, without the hassle of cross-compiling. This is done by emulation at
image build time. This emulation makes compiling a bit slower. The Dockerfile,
the instructions for building an image, is split into two parts. The first stage
compiles the Software Gateway using all the required build tools, and then in
the second stage, the application is copied to a fresh Alpine image, one of the
smallest possible. This reduces the size from 480-750MB to 9-14MB, depending
on the target architecture. The downside of using Docker is that it only supports
networked hardware interfaces, but it allows one to easily set up a lightweight
Software Gateway.

Using cross-compilers for specific targets, like the ZF ProConnect, it is pos-
sible to compile the Software Gateway on a normal computer and transfer the
applications to the target hardware that does not have the capabilities to com-
pile. Conan and CMake support this by making it easy to switch targets, setting
special flags and detecting the compiler and target.

5.5 Tests

To test the system, the following tests were done to compare the MVP to the
current solution as described in Chapter 3 and to check the requirements as set
in Section 1.1.

Boot time

The boot times of the testable hardware components are shown in Table 5.1.
The target boot time is 30 seconds. This table shows that the ProConnect and
EtherCAN/2 are the fastest, and the two tested routers are way slower. The
routers are probably slower because they have less computing power, and the
Software Gateways are run in a container system, also required to start. Starting
a container on the routers takes only a few seconds. The boot time is tested in
the setup as shown in Figure 5.4a and Figure 5.4b. Booting is considered done
when the first message is received at the test system.

50

(a) Test setup for the Software Gateway (b) Test setup for the ESD EtherCAN/2

Figure 5.4: Test setups to test the boot-time, throughput, and overhead

Hardware ZF ProConnect MicroTik HapAC2 MicroTik RB5009 ESD EtherCAN/2
Boot-time 14s 84s 66s 22s
Message throughput
(echo, 64 byte messages)

159,000/s 45,000/s before crashing 159,000/s -

Table 5.1: Boot-time and throughput of some Software Gateway hosts

Normal Linux andWindows computers can have a boot time less than 30 seconds,
but that depends on the hardware. The boot-time of the Software Gateway is
less than a second. Each added bus in the configuration adds up to 1 second to
the boot-time, depending on the type.

Throughput and overhead

Table 5.1 also shows the throughput when using an echo bus with a single HMI
that is continuously sending 64 bytes messages. The ProConnect and MicroTik
RB5009 router have the same throughput, as it is at the limit of the network,
around 100Mbps. CAN buses can transfer up to around 3500 8 byte messages
per second when using 500k baud, so this throughput is enough for several buses.
The MicroTik HapAC2 rebooted when it had too much traffic, but further tests
show that it can forward 45,000 messages per second without crashing. These
tests are also done with the setup of Figure 5.4a.

Throughput alone is not a good measure of efficiency, but network efficiency
is also important to not interfere too much with other network streams. These
additional streams include video streams that take a lot of network bandwidth
and are sensitive to latency. Many messages are sent for 20 seconds and echoed
back to an HMI to test network efficiency. The received network usage is then
divided by the number of messages. Only the received network traffic is meas-
ured, as more messages will be received than sent in a normal HMI system,
and the HMI code only combines messages in a single WebSocket message when
they are sent in the same library call. The overhead is the number of bytes
more than required. The required bytes include four for the message ID and a
specific number of data bytes. Rate-limiting was disabled for these tests, as the
tests focused on throughput and overhead. Enabling rate-limiting would reduce
network and HMI CPU load.
The ESD EtherCAN/2 was tested by receiving CAN traffic from a real bus,

as shown in Figure 5.4b. Testing throughput would not test the capabilities of

51

Gateway Software Gateway ESD EtherCAN/2
Message size (+ 4 bytes message ID) 0 8 64 0 8
Messages received 11,947,600 8,333,900 3,302,600 20,954 19,960
Received traffic (KB) 87,499 136,200 239,294 748 733
Traffic per message (bytes) 7.3 16.3 72.5 35.7 36.7
Overhead (bytes/message) 3.3 4.3 4.5 31.7 24.7

Table 5.2: Overhead of Software Gateway protocol compared to the
ESD EtherCAN/2

the hardware, but is capped at the CAN message upper limit.
The results of these tests are shown in Table 5.2. The overhead is between

3.3 and 4.5 bytes per message. This overhead includes one byte for data length,
one byte for bus number, and one byte for flags per message. Besides overhead
per message, also the configuration uploading, status sending and WebSocket
overhead, this comes out to 0.3 to 1.5 bytes per message. The overhead is higher
with larger messages, as less CAN message fit inside a WebSocket message to
share the WebSocket overhead.
Table 5.2 also shows that the protocol that is used by the current system,

the ESD EtherCAN/2, does not use message minimising and has messages that
are always the same size. This protocol also has more bytes overhead, even
when sending the longest CAN message possible (8 bytes). This shows that the
new Software Gateway is more efficient than the current system and that the
Software Gateway should be used when there is more than one HMI to keep the
network traffic the lowest.

Conclusion

These tests show that some hardware is fast enough to boot itself and the
Software Gateway within the required 30 seconds. The routers are slower, but
this is not a problem because the routers are also necessary for the network to
work. Without the network, the HMIs cannot connect to hardware interfaces
and must wait on the routers to boot.
The ZF ProConnect and MicroTik RB5009 can transfer more than 150000

messages per second but are limited by the network speed. This message rate is
more than 40 CAN buses can generate. The overhead of the Software Gateway
message protocol is much lower than the overhead of the ESD EtherCAN/2
protocol.

5.6 Conclusions

A Minimum Viable Product (MVP) was built according to the envisioned ar-
chitecture from Chapter 4. The realised architecture is shown in Figure 5.5.
As shown in previous sections, the MVP can connect to multiple buses and

be used for more complex systems, like inter-HMI communication, combining
data from multiple vehicles and remote viewing without additional complexity.
The MVP can connect to four hardware interface types. First, it works with

the Vector XL driver interfaces, like the VN7640. These devices and SocketCAN

52

Figure 5.5: MVP architecture

interfaces, like the ZF ProConnect, are only usable when using the Software
Gateway. The third type is interfaced with the Vector FDX protocol, like the
VN8914. The last hardware interface is the ESD EtherCAN/2. The MVP im-
plements a system for on the Human Machine Interface (HMI) as well. This
system can directly connect to the Software Gateway and EtherCAN/2 devices.
It can also communicate with the Vector FDX hardware interfaces using Web-
Sockify.
The Software Gateway supports cyclic sending (broadcasting), filtering, rate

limiting, and multiple buses simultaneously. It can also receive any sent mes-
sage using the echo driver, supporting a basic inter-HMI communication for
coordination or HMI page mirroring.
The code for the HMI and Software Gateway is made to enable easily adding

a new driver for new hardware interfaces, removing the current need for buying
a hardware interface when there is one already in a vehicle.
Tests show there is not much overhead per message and that message packing

and minimising improves the throughput and efficiency. The tests also show that
both systems are capable of passing more messages than any bus can generate.

Requirements

Figure 5.6 shows the requirements, as set in Section 1.1, to indicate which are
met and which are not yet included in the MVP. The items in green are the
requirements included with the MVP. The requirements in red are not in the
current MVP, mainly because they are not closely related to the core HMI
system and are supportive features. The items still in black are features that
are met depending on the system used, as explained below.
It was impossible to test FlexRay and Automotive Ethernet, as no hardware

interfaces were available with those buses. FlexRay can be used with the FDX

53

hardware interfaces, but this is not tested.
The configurability section (item 3) was not completely fulfilled, as network

settings setups are different for Windows, Linux and Docker. Often containers
cannot change network settings, as the host system sets the IP. A Software
Gateway running in Windows Subsystem for Linux (WSL) can also not change
the host Windows’s network settings. These issues make it challenging to make
one system capable of controlling network settings on different hosts.
A website for configuration is not needed, besides the network configurations,

as the HMI will send the configuration with the required buses. Therefore there
is no need to have a webpage to set this up. A debug site is developed that
shows received and decoded messages and makes it possible to send messages as
well. This CanViewer2 also indicates the state of the connected gateways and
interfaces.
The HTTP server from requirement item 2b is implemented as a separate ap-

plication to improve stability and keep both applications specific to the domains
they are made for.
Some of the hardware interfaces meet the hardware requirement (item 4).

The ZF ProConnect boots in a few seconds and meets the size requirements.
The MicroTik HapAC2 does meet the size and housing requirements but takes
longer to boot. These two devices also meet the supply voltage requirement.
When using the Software Gateway on a Windows or Linux computer, it will
probably meet the boot-time requirement but might not meet the size or supply
voltage requirement.
The licensing requirement (item 5c) is met by all (currently) possible con-

figurations, except when using the Vector VN8914. This hardware interface
requires setup once in a dedicated application to set up the message definitions.
When this interface is already included in the vehicle, this application is also
already in use, so no additional licenses are required to use it for an HMI.
Meeting the per-project budget requirement (item 5b) depends on which buses

are required for the HMI and what hardware is already included. The ZF
ProConnect does not meet the small project requirement, but if it is already
mounted in the vehicle for something else, it is cheaper to reuse it for the HMI
than to add new parts.
Table 5.3 shows a decision matrix with the four different hardware interfaces

that can be used with the MVP. It shows what is required, which buses are
available and the reusability of the components. As each system is possible
with the Software Gateway, the reusability and pros/cons do not consider that
the router can be used for more things and that all systems are capable of
filtering, rate limiting and cyclic broadcasting.

54

1. Vehicle Connectivity:

(a) CAN bus

i. Normal & CAN-FD
speeds

ii. 11-bit & 29-bit message
IDs

iii. Configurable speeds

(b) LIN

(c) Preferred: FlexRay &
Automotive Ethernet

2. HMI Connectivity:

(a) WebSocket server:

i. Bi-directional and mul-
tiple HMI connections

ii. Message decoding mod-
ule in JavaScript (JS)

iii. Filtering on mes-
sage/bus, whitelisting

iv. Efficient messaging,
bundling of messages

v. downsampling of mes-
sages

vi. <75ms (13Hz)
roundtrip time

(b) HTTP-server:

i. Serve HMI and debug
pages

ii. >500MB size possible

3. Configurability:

(a) Modular system

(b) Centralised

(c) Network settings

(d) Website for configuration

(e) HTTP-server settings

4. Hardware:

(a) Production type hardware

(b) boot-time: <30s

(c) Must have a housing

(d) Size: 20x30x10cm to fit eas-
ily in vehicles

(e) Supply voltage 10-32V

5. Other:

(a) Website with state of differ-
ent modules

(b) Per-project budget

i. Small HMI project:
<€1k

ii. Big HMI project:
<€5k

(c) No software licensing per
developer or device

Figure 5.6: Requirements as set in Section 1.1 with green items that
are included in the MVP and red items that are not included.

55

Type: ESD EtherCAN/2 Vector FDX SocketCAN (ZF ProConnect) Vector VectorXL
No of boxes: 2: EtherCAN/2, router 2: VN8914, router 1: ProConnect 3: VN7640, Windows PC, router
Hardware price: €600: 500 + 100 €8100: 8000 + 100 €1800 €1800: 1200 + 500 + 100
Ease of use: Easy Needs FDX config setup Easy Medium, needs driver setup
Reusability None None Device can be used for other tasks PC can be used for other tasks
Buses 1x CAN 3x CAN, LIN, FlexRay, Automotive Ethernet 2x CAN, 2x CAN FD, Automotive Ethernet 3x CAN (FD), FlexRay

Pro Existing, simple and proven system More buses
Lots of buses
Dedicated hardware
Can act as access point

Some buses

Con Just a single bus Requires setup for each message SocketCAN requires Linux Windows required for the Vector XL driver

Table 5.3: Decision matrix for the implemented hardware

56

Chapter 6

Conclusions

As stated in Chapter 1, the project goal was to determine how to (re)design
a Human Machine Interface (HMI) system for future innovation vehicles. The
first step was analysing the preferred automotive buses, namely Controller Area
Network (CAN), Controller Area Network with Flexible Data-rate (CAN FD)
and other future networks. These automotive networks are all message-oriented
instead of service/connection-oriented, like standard networking. This message-
oriented approach requires the HMI system to handle simple messages instead
of more complex connections/services. Another requirement is that it should be
reasonably efficient in terms of load on the internet backbone, as that is shared
with other systems, and the HMIs should not need processing power.

A range of hardware interfaces was researched on communicating and making
a complete system with those components. The software components were also
investigated on what is needed and how to make it work for a flexible and per-
formant system. Also, other use cases like distributed systems and inter-HMI
communication were investigated. The next step was investigating the other
hardware and its capabilities, like virtualisation. Two mappings were made to
map the software components onto the hardware components, keeping efficiency
and flexibility in mind. These two mappings were combined into a single archi-
tecture to join the possibilities and flexibility. This final architecture, as shown
Figure 6.1, is proposed to have a flexible and reusable system for receiving and
sending messages on different buses. The HMI can connect directly to hardware
interfaces if they support WebSocket connections. When a hardware interface
has a Socket interface, then WebSockify can convert WebSocket messages for
the HMI to the TCP/UDP messages the hardware interfaces use. The Software
Gateway can connect to any hardware interface, networked or otherwise. The
Software Gateway can provide extra features, like filtering, rate limiting, and
cyclic broadcasting.

The proposed architecture allows any capable hardware to be easily integrated
into the system and keeps the complete system simple.

To test the architecture, a Minimum Viable Product (MVP) was made as de-
scribed in Chapter 5. The MVP includes drivers for four hardware interfaces and
a software gateway to interact with these interfaces. This software gateway can
be run on Windows, Linux and any other hardware capable of running Docker
and is thus flexible on where to be located. The MVP connects to four hardware
interfaces, namely the ESD EtherCAN/2, Vector VN7640, Vector VN8914 and

57

Figure 6.1: Global architecture

SocketCAN devices, like the ZF ProConnect. With this hardware, the MVP
can connect to CAN and CAN FD, as required for this project, and is also able
to connect to FlexRay, Local Interconnect Network (LIN) and other buses with
some external configuration. The MVP meets most of the requirements set by
ZF. The tests show that the networking overhead of the Software Gateway to
HMI is lower than the current system.
Therefore, the chosen architecture is acceptable for this problem as the MVP

shows that it works and does not add overhead over the current system while
adding various possible hardware interfaces.
The MVP allows developers to interact with more vehicle buses and more

types of buses and make distributed systems, using inter-HMI communication
and by combining data from multiple vehicles.

58

Chapter 7

Future Work

There are some leftover tasks to complete the system from the current MVP.
These tasks include testing the different components and analysing the code for
possible faults, like deadlocks and exceptions, to ensure a stable system.
Besides making the system more stable, more drivers for more hardware in-

terfaces can be added, like the Ixxat or Peak-System compatible product lines.
Also, support for even more networks could be added. One interesting future
network is Controller Area Network Extra Long (CAN XL), which has even
longer messages, a different addressing system and indicators for higher-layer
protocols. These features are possible with the designed architecture.
Another network that could be added to the MVP is Automotive Ethernet. As

this is a service-oriented network without a common bus, snooping and grabbing
all the data is impossible. Therefore a different approach must be taken to get
data from and to the vehicle. When data is received in the Software Gateway,
it can be processed like any other message.
Another feature that was requested but did not make it entirely to the MVP

is inter-HMI communication for coordination and control. This feature could
ensure that only one HMI is sending a message or has control of a feature without
interference from the other HMIs. The Software Gateway has a basic feature
for this in the form of the echo driver, which returns all incoming messages to
all the connected HMIs, but a distributed protocol on all the HMIs is needed to
have a robust control.
This project was built around the fact that hardware was available and soft-

ware was required to connect it to the HMI. A possible future project for ZF
could be building hardware based on the requirements instead of conforming the
software to the available hardware. A hardware interface could, for example, be
made with an Espressif ESP32, as it has CAN, Wi-Fi/Ethernet and WebSocket
support and a CAN FD controller with SPI, like the Microchip MCP251863, is
easily added.

59

60

Bibliography

[1] Charles Anderson. Docker [software engineering]. IEEE Software,
32(3):102–c3, May 2015.

[2] CAN in Automation. Can fd - the basic idea. https://www.can-cia.org/
can-knowledge/can/can-fd/. Last accessed: Sep. 15, 2022.

[3] Steve Corrigan. Introduction to the controller area network (can). https:
//www.ti.com/lit/an/sloa101b/sloa101b.pdf, May 2016. Last ac-
cessed: Jan. 16, 2023.

[4] Irina Costachescu. 101: Local interconnect net-
work (lin). https://community.nxp.com/t5/Blogs/

101-Local-Interconnect-Network-LIN/ba-p/1284877, May 2021.
Last accessed: Jan. 21, 2023.

[5] Docker Inc. About storage drivers. https://docs.docker.com/storage/
storagedriver/, August 2021. Last accessed: Oct. 13, 2022.

[6] Martin Falch. Can dbc file explained - a simple intro. https://

www.csselectronics.com/pages/can-dbc-file-database-intro, 2022.
Last accessed: Oct. 12, 2022.

[7] Martin Falch. Can fd explained - a simple intro [2022] -
css electronics. https://www.csselectronics.com/pages/

can-fd-flexible-data-rate-intro, March 2022. Last accessed:
Sep. 15, 2022.

[8] Martin Falch. J1939 explained - a simple in-
tro [2022]. https://www.csselectronics.com/pages/

j1939-explained-simple-intro-tutorial, 2022. Last accessed:
Oct. 12, 2022.

[9] Chindris Gabriel and Horia Hedesiu. Integrating sensor devices in a lin bus
network. In 26th International Spring Seminar on Electronics Technology:
Integrated Management of Electronic Materials Production, pages 150–153.
IEEE, May 2003.

[10] Gupta. Docker ”copy-on-write (cow)” strategy. https://stackoverflow.
com/a/71480874, March 2022. Last accessed: Jan. 22, 2023.

[11] Florian Hartwich. Can with flexible data-rate. In Proc. iCC, pages 1–9.
Citeseer, March 2012.

61

https://www.can-cia.org/can-knowledge/can/can-fd/
https://www.can-cia.org/can-knowledge/can/can-fd/
https://www.ti.com/lit/an/sloa101b/sloa101b.pdf
https://www.ti.com/lit/an/sloa101b/sloa101b.pdf
https://community.nxp.com/t5/Blogs/101-Local-Interconnect-Network-LIN/ba-p/1284877
https://community.nxp.com/t5/Blogs/101-Local-Interconnect-Network-LIN/ba-p/1284877
https://docs.docker.com/storage/storagedriver/
https://docs.docker.com/storage/storagedriver/
https://www.csselectronics.com/pages/can-dbc-file-database-intro
https://www.csselectronics.com/pages/can-dbc-file-database-intro
https://www.csselectronics.com/pages/can-fd-flexible-data-rate-intro
https://www.csselectronics.com/pages/can-fd-flexible-data-rate-intro
https://www.csselectronics.com/pages/j1939-explained-simple-intro-tutorial
https://www.csselectronics.com/pages/j1939-explained-simple-intro-tutorial
https://stackoverflow.com/a/71480874
https://stackoverflow.com/a/71480874

[12] Florian Hartwich. Introducing can xl into can networks. https:

//www.can-cia.org/fileadmin/resources/documents/proceedings/

2020_hartwich.pdf, July 2020. Last accessed: Sep. 15, 2022.

[13] Zongmin Jiang, Yan Chang, and Xuefen Liu. Design of software-defined
gateway for industrial interconnection. Journal of Industrial Information
Integration, 18:100130, 2020.

[14] Rowena Jones and Gregoire De Turckheim. Flexray
module training. https://blog.scaleway.com/

iot-hub-what-use-case-for-websockets/, February 2021. Last
accessed: Jan. 22, 2023.

[15] National Instruments Corp. Flexray automotive communication bus
overview. https://www.ni.com/nl-nl/innovations/white-papers/06/
flexray-automotive-communication-bus-overview.html, June 2021.
Last accessed: Sep. 23, 2022.

[16] Victoria Pimentel and Bradford G Nickerson. Communicating and display-
ing real-time data with websocket. IEEE Internet Computing, 16(4):45–53,
August 2012.

[17] Stefan Profanter, Ayhun Tekat, Kirill Dorofeev, Markus Rickert, and Alois
Knoll. Opc ua versus ros, dds, and mqtt: performance evaluation of in-
dustry 4.0 protocols. In 2019 IEEE International Conference on Industrial
Technology (ICIT), pages 955–962. IEEE, February 2019.

[18] Andrea Reindl, Daniel Wetzel, Norbert Balbierer, Meier Hans, Michael
Niemetz, and Sangyoung Park. Comparative analysis of can, can fd and
ethernet for networked control systems. In Embedded World Conference
2021, Nürnberg, Germany, October 2021.

[19] Robert Bosch GmbH. Can xl. https://www.bosch-semiconductors.com/
ip-modules/can-protocols/can-xl/. Last accessed: Sep. 15, 2022.

[20] Robert Bosch GmbH. Can xl - the next step in can evolution.
https://www.bosch-semiconductors.com/media/ip_modules/pdf_

2/can_xl_1/20220825_can_xl_overview_v2.pdf, August 2022. Last
accessed: Sep. 15, 2022.

[21] Rudy Tellert Elektronik. Bit position of can signals (start
bit). https://www.tellert.de/files/media/temes/help/

position-of-can-signals-(start.html, 2017. Last accessed: Oct. 12,
2022.

[22] Robert Shaw and Brendan Jackman. An introduction to flexray as an
industrial network. In 2008 IEEE International Symposium on Industrial
Electronics, pages 1849–1854, Cambridge, UK, November 2008. IEEE.

[23] Benfano Soewito, Christian, Fergyanto E.Gunawan, Diana, and
I Gede Putra Kusuma. Websocket to support real time smart home applic-
ations. Procedia Computer Science, 157:560–566, October 2019.

62

https://www.can-cia.org/fileadmin/resources/documents/proceedings/2020_hartwich.pdf
https://www.can-cia.org/fileadmin/resources/documents/proceedings/2020_hartwich.pdf
https://www.can-cia.org/fileadmin/resources/documents/proceedings/2020_hartwich.pdf
https://blog.scaleway.com/iot-hub-what-use-case-for-websockets/
https://blog.scaleway.com/iot-hub-what-use-case-for-websockets/
https://www.ni.com/nl-nl/innovations/white-papers/06/flexray-automotive-communication-bus-overview.html
https://www.ni.com/nl-nl/innovations/white-papers/06/flexray-automotive-communication-bus-overview.html
https://www.bosch-semiconductors.com/ip-modules/can-protocols/can-xl/
https://www.bosch-semiconductors.com/ip-modules/can-protocols/can-xl/
https://www.bosch-semiconductors.com/media/ip_modules/pdf_2/can_xl_1/20220825_can_xl_overview_v2.pdf
https://www.bosch-semiconductors.com/media/ip_modules/pdf_2/can_xl_1/20220825_can_xl_overview_v2.pdf
https://www.tellert.de/files/media/temes/help/position-of-can-signals-(start.html
https://www.tellert.de/files/media/temes/help/position-of-can-signals-(start.html

[24] Branislav Sredojev, Dragan Samardzija, and Dragan Posarac. Webrtc tech-
nology overview and signaling solution design and implementation. In 2015
38th international convention on information and communication techno-
logy, electronics and microelectronics (MIPRO), pages 1006–1009, Opatija,
Croatia, May 2015. IEEE.

[25] Texas Instruments. Flexray module training. https://www.ti.com/lit/

ml/sprt718/sprt718.pdf, November 2015. Last accessed: Jan. 21, 2023.

[26] UAB Elektromotus. Elektromotus can bus topology recommenda-
tions. https://emusbms.com/files/bms/docs/Elektromotus_CAN_bus_

recommendations_v0.2_rc3.pdf. Last accessed: Sep. 15, 2022.

[27] Rufin VanRullen, Leila Reddy, and Christof Koch. The continuous wagon
wheel illusion is associated with changes in electroencephalogram power at
13 hz. The Journal of neuroscience : the official journal of the Society for
Neuroscience, 26:502–7, February 2006.

[28] Vector Informatik GmbH. Can: Bitstuffing. https://elearning.vector.
com/mod/page/view.php?id=51, September 2021. Last accessed: Sep. 15,
2022.

[29] Peng Zhang. Advanced industrial control technology, chapter Industrial
control networks. William Andrew, 2010.

63

https://www.ti.com/lit/ml/sprt718/sprt718.pdf
https://www.ti.com/lit/ml/sprt718/sprt718.pdf
https://emusbms.com/files/bms/docs/Elektromotus_CAN_bus_recommendations_v0.2_rc3.pdf
https://emusbms.com/files/bms/docs/Elektromotus_CAN_bus_recommendations_v0.2_rc3.pdf
https://elearning.vector.com/mod/page/view.php?id=51
https://elearning.vector.com/mod/page/view.php?id=51

64

Acronyms

API application programming interface.

BCM Broadcast Manager.

CAN Controller Area Network.

CAN FD Controller Area Network with Flexible Data-rate.

CAN XL Controller Area Network Extra Long.

CI/CD Continuous Integration / Continuous Delivery.

CRC Cyclic Redundancy Check.

CSMA Carrier Sense Multiple Access.

DBC CAN database.

ECU electronic control unit.

ES ECMAScript.

FDX Fast Data Exchange.

GUI graphical user interface.

HMI Human Machine Interface.

IoT Internet of Things.

JS JavaScript.

JSON JavaScript Object Notation.

kbps kilobit per second.

LIN Local Interconnect Network.

Mbps megabit per second.

65

ms millisecond.

MSB Most Significant Bit.

MVP Minimum Viable Product.

NUC Next Unit of Computing.

OPC UA OPC Unified Architecture.

OS Operating System.

PLC Programmable Logic Controller.

QoS Quality of Service.

ROS Robot Operating System.

SBC single-board computer.

SDT service data unit type.

TDMA Time Division Multiple Access.

UART Universal Asynchronous Receiver Transmitter.

VM virtual machine.

VPN Virtual Private Network.

WebRTC Web Real-Time Communication.

WSL Windows Subsystem for Linux.

66

Appendix A

Hardware interfaces

The following hardware interfaces were chosen to be added to the MVP be-
cause they were available and most promising/interesting for future innovation
vehicles.

• ESD EtherCAN/2

• Vector VN7640 (Vector XL driver)

• Vector VN8914 (Vector FDX)

• ZF ProConnect (SocketCAN)

In the following sections, the hardware interface and its provided driver are
explained, how to connect to it and a corresponding system setup is shown that
works with the MVP.

ESD EtherCAN/2

The ESD EtherCAN/2 is a standalone box that has one Ethernet port and one
CAN interface. It runs multiple protocols: it provides a UDP interface with its
ELLSI protocol, and it also supports this protocol on a WebSocket interface.
ESD provides a C and a JavaScript (JS) implementation. The protocol uses
telegrams with control commands or one or more CAN messages. The Eth-
erCAN/2 sends a UDP/WebSocket message every 10millisecond (ms) to put
multiple CAN messages into a single telegram.
When using the ESD EtherCAN/2, there are three main possible architec-

tures with the new HMI system. These are shown in Figure A.1.
The first network (Figure A.1a) uses the Software Gateway on any capable

hardware and lets it connect to the EtherCAN/2. The Software Gateway can
be on any hardware because the EtherCAN/2 can be reached from the Ethernet
network using the C driver. Using the Software Gateway provides the added
functionality of the Software Gateway, such as rate filtering, better filtering
and broadcasting. It also lowers the load on the EtherCAN/2 when there are
multiple HMIs in the system. The EtherCAN/2 then only needs to communicate
with a single socket client and not multiple WebSocket clients.
The second option (Figure A.1b) is connecting to the EtherCAN/2 through

WebSockify, with the ESD ELLSI JS driver on the HMI. This driver usually

67

(a) ESD EtherCAN/2 through the Software Gateway (b) ESD EtherCAN/2 through WebSockify

(c) ESD EtherCAN/2 directly

Figure A.1: Different architectures for the ESD EtherCAN/2

connects directly to the EtherCAN/2, but as the ELLSI protocol is used in
WebSocket messages, the WebSocket layer can be stripped, and it still works.
This shifts the load for providing the WebSocket interface from the EtherCAN/2
to the WebSockify runner (the router). This option would only be recommended
when the EtherCAN/2 is not able to provide multiple connections to a large
number of HMIs, and it is not possible to use the Software Gateway. It does
not add any extra functionality.

The last setup (Figure A.1c) uses the new HMI JS driver system, with the
ESD ELLSI JS driver and connects to the EtherCAN/2 directly from the HMI.
This is the same as the current setup shown in Chapter 3, but using the new JS
gateway system. This makes it possible to change hardware by only changing
the configuration on the HMI and not completely switching drivers in the code.

The last option is recommended For a simple HMI system with a few (¡3)
HMIs and no inter-HMI communication, as this is the easiest and does not
require extra hardware or setup. For more complex systems with more HMIs
and inter-HMI, the first option is recommended, as this will take most of the
load off the EtherCAN/2 and could be more network efficient.

Vector XL

Vector Informatik produces hardware and software for automotive companies.
One of their products is the VN7640, a hardware interface with CAN (FD), LIN
and FlexRay that can be connected through an Ethernet connection. Vector
does supply their own software for sending/receiving data to those buses, and
it is even possible to make simple graphical user interfaces (GUIs) with their

68

https://www.vector.com/int/en/

Figure A.2: VectorXL architecture

software. It is possible to talk to the hardware interfaces with their Vector XL
driver. This is a proprietary C driver compiled to a dll file for Windows. This
way it is required to use Windows for the Software Gateway. The Vector XL
driver does not communicate directly with the hardware interface, but uses an
intermediate system where all the needed hardware interfaces are connected and
then it is possible to control a channel, a single bus of a hardware interface, and
it makes it possible to have multiple applications connect to the same channel.

This means that before using the Software Gateway, the Vector XL driver
needs to be installed and configured. The MVP could embed the driver in-
stallation in the installer, however this would increase the 1.5MB installer with
1.47GB and this might not be allowed by their license.

The Vector XL library was added to the MVP and is only included when
built for Windows. The configuration checks are always compiled though, even
when compiling for Linux, to be able to check configurations of Windows Soft-
ware Gateways that the Linux Software Gateway might connect to and upload
configurations to. The same is done for SocketCAN configurations on Windows
Software Gateways.

In Figure A.2 the possible system for using Vector XL devices is shown.
Vector hardware interfaces are often used for development and are often already
incorporated in an Innovation Vehicle. The only thing that needs to be added
to the system is a Windows computer for the Software Gateway. There are
small computers, like Next Unit of Computings (NUCs), that can fit easily in
a vehicle and are cheaper than any hardware interface possible with the MVP.
With the Software Gateway, the HMI is able to connect to this interface and
communicate with a lot of buses in the vehicle.

When using Vector devices supported by the VectorXL driver, like the VN7640
and the CanCaseXL, the Vector XL Software Gateway driver can be used. This
driver only works on Windows, as Vector only supports their driver on this
operating system.

69

(a) FDX system using WebSockify (b) FDX system using a Software Gateway

Figure A.3: Possible FDX architectures

Vector FDX

Vector also produces other hardware, like the VN8914. This is a standalone
computer with multiple buses, like CAN (FD), LIN and FlexRay. It is pos-
sible to connect to this with the Vector XL driver, but this requires a Win-
dows computer. The VN8914 also supports the Fast Data Exchange (FDX)
protocol. This is a protocol that uses UDP messages with one or more com-
mands in a datagram. These commands include DataRequest, DataExchange
and FreeRunningRequest. All these commands are used with groups. These
groups are defined beforehand in a FDX file and include the ID of each group
and what signals should be in that group. This configuration should be the
same on the client and the VN8914. The client then can request a group with
the DataRequest command or request that group to be sent cyclically using the
FreeRunningRequest. The VN8914 then will send the data in a DataExchange
command to the client.
The FDX protocol is quite good documented and Vector provides a C++ ref-

erence implementation. This implementation is used for the Software Gateway
and using the documentation, a driver is made in JS that uses WebSockify to
convert the UDP datagrams to WebSocket messages and vice-versa.
The two possible system layouts are shown in Figure A.3. Figure A.3a shows

the architecture with a WebSockify running on the router to convert the Web-
Socket messages to UDP frames. This system is recommended when there are
not too much HMIs in the system, as they each connect to the VN8914, resulting
in duplicate data from the VN8914 to the router.
Figure A.3b shows the VN8914 used with the Software Gateway. The Soft-

ware Gateway can be run on any capable hardware, as there is no requirement
for Windows when using the FDX protocol. When there are more HMIs connec-
ted, this system is recommended to take load off from the VN8914 and reduce
network traffic.

ZF ProConnect

ZF develops, besides vehicle transmissions and car parts, also electronic parts for
the automotive industry, like the ZF ProConnect. This is an automotive com-
puter with CAN (FD), LIN and other buses, running an NXP i.MX8 processor.

70

Figure A.4: ZF ProConnect architecture

It runs a bare Linux distribution, and with a dedicated toolkit, it is possible
to compile C/C++ for it. It supports SocketCAN, so it can be used easily
with the Software Gateway. A simple ZF ProConnect system setup is shown in
Figure A.4. The ProConnect can also be a Wi-Fi access point, removing the
requirement for a router in simple systems.

The SocketCAN system makes it easy to use and with the help of the SocketCAN-cpp
library with added support for the Broadcast Manager (BCM), it is one of the
smallest drivers. SocketCAN makes CAN (FD) buses available as network in-
terfaces and thus these buses can be used with normal Socket programming.
With SocketCAN it is easy to change hardware interfaces and it is possible
to make virtual CAN (FD) buses to simulate buses and to communicate with
CAN (FD) applications on the same computer. The Software Gateway also
supports this and for broadcasting switches the broadcasting algorithm to use
SocketCAN’s BCM system. Delegating the cyclic sending to the kernel instead
of the application should make it more stable and less CPU-intensive.

71

https://github.com/ArendJan/socketcan-cpp

72

Appendix B

Broadcasting algorithm

Algorithm 1 Broadcasting algorithm

delay ← gcd(messages.interval)
for message in messages do

message.divisor ← message.interval/delay
end for
maxLoop← lcm(messages.divisor)
loopCounter ← 0
loop

for message in messages do
if loopCounter%message.divisor is 0 then

sendMessage(message)
end if

end for
loopCounter ← loopCounter + 1
if loopCounter is maxLoop then

loopCounter ← 0
end if
sleep(delay)

end loop

The algorithm first calculates the greatest common divisor (GCD) of the
intervals. This is the delay that fits nicely in all the intervals. Then a divisor is
calculated per message. This is how often the delay must be done between each
cycle for that message. Then a least common multiple (LCM) is calculated.
This is the number of times the delay must be done such that all the intervals
fit nicely and the loop counter can be reset. This prevents integer overflow.
The same algorithm can be used for this broadcast timeout checking, but

instead of sending the message, it can check a list to check that the message
was received in that interval.

73

74

Appendix C

Rate limit algorithms

In Figure C.1, some algorithms for rate limiting are shown. Figure C.1a shows
an algorithm that stores the time the message has been sent last, and when
the time since the last message is more than the rate interval, the message is
forwarded, and the storage is updated. This is the most basic algorithm, but it
is a bit more expensive on the calculations, as getting and calculating the time
is more expensive.
In Figure C.1b, a nearly similar algorithm is shown, but instead of storing

the last sent time, a boolean, whether it was sent in the last time slice, is
stored. Then every rate limit interval, the list of booleans is cleared, and the
first message of that ID is forwarded again. This requires an extra thread but
is cheaper per received message, as it is only a lookup instead of an additional
time calculation.
A counting algorithm is shown in Figure C.1c. This algorithm only forwards

every Nth message with a reset at every rate interval. This interval is needed to
continue forwarding each message with a low rate compared to faster messages,
which only need every Nth message. This algorithm is probably as expensive as
the time-sliced rate limit algorithm but can have a longer rate interval, resulting
in fewer thread wake-ups and writes and fewer message storms at each time slice
start.
A queued approach is shown in Figure C.1d, where a queue of messages is

made each time slice and then sent all at once. The queue should only contain
unique message IDs to keep the last received message or discard new messages
if they already exist in the list. This queued algorithm will take more memory
than the other algorithms as it needs to store the messages with their data
instead of a flag or time point. Meanwhile, it will forward all the messages at
the same time, which could result in better WebSocket message usage, as it
could fill it up more.
The time slice rate limiting algorithm of Figure C.1b is probably the optimal

algorithm, as it does not need as much storage as the independent time triggered
and queued algorithms and is stricter on timing than the counted algorithm.

75

(a) Independent Time Triggered rate limiting (b) Time slice rate limiting

(c) Counted/Decimation rate limiting (d) Queued time triggered rate limiting

Figure C.1: Different algorithms for rate limiting

76

Appendix D

Bus Messages

Figure D.1 proposes how to send the bus messages in WebSocket messages.
The flags byte is there to signal special cases, like broadcasting. Then the data
length is sent with the bus ID. This ID is unique for each bus in the config and
keeps track of which bus the data is meant for or came from. Subsequently, the
message ID is sent and finally, the data. The length field defines the length of
the data. This proposal will fit any CAN, CAN FD, LIN, and FlexRay message.
CAN XL messages can be longer and will not fit this proposal type. Extending
the length field to two bytes would also make those messages fit.
The top (left) in Figure D.1 shows that multiple messages fit in a buffer,

but not all. Message 4 does not fit and will be stored in a buffer for the next
WebSocket message.
On the right is shown when a message is sent every sixms with a timeout

of tenms with a very large buffer compared to the message size. The first two
messages will be packed in a single WebSocket message, where message 3 arrived
late to the timeout and will be put in the next message, even though the buffer
was not full.

77

Figure D.1: Message definition and buffer and timeout examples

78

	Preface
	Introduction
	Problem statement

	Background information and existing systems
	Automotive Networks
	CAN
	CAN FD
	CAN XL
	LIN
	FlexRay
	Conclusion

	HMI Communication
	Virtualization
	Existing messaging systems
	Industrial interconnection
	MQTT
	ROS
	Comparing and possible usage

	Conclusion

	Current system
	Human Machine Interface
	Shortcomings and benefits
	Conclusion

	Architecture
	Software components
	Hardware drivers
	WebSocket Interfaces
	HMI Communication
	Message Downsampling

	Hardware components
	Basic components
	Hardware interfaces

	Distributed systems
	Mapping software to hardware
	Software Gateway
	WebSockify

	Final architecture

	Minimum Viable Product
	Architecture
	Software tools
	Software components
	Software gateway hardware
	Tests
	Conclusions

	Conclusions
	Future Work
	Acronyms
	Hardware interfaces
	Broadcasting algorithm
	Rate limit algorithms
	Bus Messages

